同学们提问关于“222b2_将(x+y+z+1)20展开,合并同类项后共有( )项.A.C222B.C...”的问题,52IJ师说平台通过网络上精心整理了以下关于“222b2_将(x+y+z+1)20展开,合并同类项后共有( )项.A.C222B.C...”的一些有用参考答案。请注意:文中所谈及的内容不代表本站的真正观点,也请不要相信各种联系方式。下面是本网所整理的“222b2_将(x+y+z+1)20展开,合并同类项后共有( )项.A.C222B.C...”的相关信息:
本文发布时间:2016-04-13 15:48 编辑:勤奋者
?
问题
将(x+y+z+1)20展开,合并同类项后共有( )项.A.C222B.C...
科目: 关键词:222b2
优质解答
每一组中都去掉一个小球的数目分别作为(x+y+z+1)20的式中每一项中x,y,z各字母的次数.
小球分组模型与各项的次数是一一对应的.
故(x+y+z+1)20的式中,合并同类项之后的项数为C323,
故选D.
对于这个式子,可以知道必定会有形如qxaybzc1d的式子出现,其中q∈R,a,b,c,d∈N
而且a+b+c+d=20,
构造24个完全一样的小球模型,分成3组,每组至少一个,共有分法C323
每一组中都去掉一个小球的数目分别作为(x+y+z+1)20的式中每一项中x,y,z各字母的次数.
小球分组模型与各项的次数是一一对应的.
故(x+y+z+1)20的式中,合并同类项之后的项数为C323,
故选D.
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
