欢迎您访问52IJ教育培训网,今天小编为你分享的数学方面的学习知识是通过网络精心收集整理的:“已知数列{an}_已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n+1)2an+1(n∈N)[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
1.
n≥2时,
a1+2a2+3a3+...+nan=[(n+1)/2]a(n+1) (1)
a1+2a2+3a3+...+(n-1)a(n-1)=(n/2)an (2)
(1)-(2)
nan=[(n+1)/2]a(n+1)-(n/2)an
(n+1)a(n+1)=3nan
[(n+1)a(n+1)]/(nan)=3,为定值
a1×1=1×1=1,数列{nan}是以1为首项,3为公比的等比数列
nan=1×3^(n-1)=3^(n-1)
an=3^(n-1)/n
n=1时,a1=1/1=1,同样满足通项公式
数列{an}的通项公式为an=3^(n-1)/n
2.
n^2·an=n^2·[3^(n-1)/n]=n·3^(n-1)
Tn=1×1+2×3+3×32+...+n×3^(n-1)
3Tn=1×3+2×32+...+(n-1)×3^(n-1)+n×3?
Tn-3Tn=-2Tn=1+3+...+3^(n-1)-n×3?
=1×(3?-1)/(3-1) -n×3?
=[(1-2n)×3?-1]/2
Tn=[(2n-1)×3? +1]/4
3.
[a(n+1)/(n+2)]/[an/(n+1)]
=[3?/(n+1)(n+2)]/[3^(n-1)/n(n+1)]
=3n/(n+2)
n≥1 n/(n+2)≤1/3,当且仅当n=1时取等号
3n/(n+2)≤1,当且仅当n=1时取等号
即对数列{an/(n+1)},a1/2=a2/3,当n≥2时,{an/(n+1)}单调递减
a1/2=1/2
要不等式an≤(n+1)λ对任意正整数n恒成立,即an/(n+1)≤λ对任意正整数n恒成立,只需当an/(n+1)取最大值时不等式成立.
λ≥1/2,λ的最小值为1/2
其他回答
a(1)=1,
a(1)+2a(2)+...+na(n) = (n+1)a(n+1)/2, a(1) = 2a(2)/2, a(2)=1.
a(1)+2a(2)+...+na(n)+(n+1)a(n+1) = (n+2)a(n+2)/2 = (n+1)a(n+1)/2 + (n+1)a(n+1)=3(n+1)a(n+1)/2,
(n+2)a(n+2) = 3(n+1)a(n...
其他类似问题
问题1:已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n∈N*)(1)求an的通项公式 (2)求数列{n^2an}的前n项和Tn[数学科目]
由a1 = 1,
a1 + 2a2 + 3a3 + ...+ nan = ((n + 1) / 2)a(n + 1) (*)
(*)式取n = 1 得 a2 = 1
当k ≥ 3时
[(*)式取n = k] - [(*)式取n = k - 1] 并将k替换为n 得 nan = [(n + 1)a(n + 1) - nan] / 2
整理得 a(n + 1) / an = 3n / (n + 1)
a(n + 1) = a2 * (a3 / a2) * (a4 / a3) * ...* (a(n + 1) / an)
= (3 * 2 / 3) * (3 * 3 / 4) * ...* (3 * n / (n + 1))
= 2 * 3^(n - 1) / (n + 1)
即
a1 = 1
an = (2 / n) * 3^(n - 2) 当n ≥ 2
应该是n*2an吧 否则太难了
设 bn = n*2an
b1 = 2,
bn = 4 * 3^(n - 2) n ≥ 2 是等比数列
从而 Tn = 2 + 4 * (1 - 3^(n - 1)) / (1 - 3)
= 2 * 3^(n - 1)
恰好对n = 1,2,...成立.
问题2:已知数列an满足a1+2a2+3a3+……+nan=2^n,求an
a1+2a2+3a3+……+(n-1)a(n-1)+nan=2^n
a1+2a2+3a3+……+(n-1)a(n-1)=2^(n-1)
两式相减得
nan=2^n-2^(n-1)
nan=2^(n-1)
an=2^(n-1)/n
问题3:已知数列an满足a1+2a2+3a3+...+nan=n(n+1)*(n+2),则数列an的前n项和Sn=?[数学科目]
a1+2a2+3a3+...+nan=n(n+1)*(n+2),则:
a1+2a2+3a3+...+(n-1)×an-1=n(n-1)*(n+1),两式相减:
nan=n(n+1)*(n+2)-n(n-1)*(n+1),得
an=3n+3
所以:
a1+a2+a3+...+an=3*(1+2+3+...+n)+3n=3*n(n+1)/2+3n
整理得前n项和为:a1+a2+a3+...+an=3n(n+3)/2
问题4:已知数列{an}中,若a1+2a2+3a3+…+nan=n(n+1)(n+2)则 an=[数学科目]
若a1+2a2+3a3+…+nan=n(n+1)(n+2) (1)
则a1+2a2+3a3+...+(n-1)a(n-1)=(n-1)n(n+1) (2)
nan=n(n+1)(n+2-n+1)
an=3n+3
问题5:在数列{an}中,a1=1,a1+2a2+3a3+.+nan=(n+1)(an+1)/2,求{an}的通项an+1是指a的n+1项[数学科目]
a1=1,a1+2a2+3a3+.+nan=(n+1)(a(n+1))/2,
令n=1得:a1=2a2/2,a2=1.
当n≥2时,a1+2a2+3a3+.+(n-1)a(n-1)=na(n)/2,
两式相减得:nan=(n+1)(a(n+1))/2 -na(n)/2,
3na(n)/2=(n+1)(a(n+1))/2,
a(n+1) /a(n)= 3n/(n+1)( n≥2),
所以a3/a2=3?2/3,
a4/a3=3?3/4,
a5/a4=3?4/5,
…………
a(n) /a(n-1)= 3(n-1)/n
以上各式相乘得:a(n) / a2=3^(n-2)?2/n( n≥2),
a(n)=3^(n-2)?2/n ( n≥2),
综上可知:n=1时,a(n)=1.
n≥2时,a(n)=3^(n-2)?2/n.
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
