欢迎您访问52IJ教育培训网,今天小编为你分享的数学方面的学习知识是通过网络精心收集整理的:“2012海淀一模数学_2014年海淀区中考一模数学24题24.在△ABC中,AB=AC,将...[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
(1)30°
(2)如图作等边△AFC,连结DF、BF.
∴AF=FC=AC,∠FAC=∠AFC=60°.
∵∠BAC=100°,AB=AC,
∴∠ABC=∠BCA=40°.
∵∠ACD=20°,
∴∠DCB=20°.
∴∠DCB=∠FCB=20°.①
∵AC=CD,AC=FC,
∴DC=FC.②
∵BC=BC,③菁优网
∴由①②③,得△DCB≌△FCB,
∴DB=BF,∠DBC=∠FBC.
∵∠BAC=100°,∠FAC=60°,
∴∠BAF=40°.
∵∠ACD=20°,AC=CD,
∴∠CAD=80°.
∴∠DAF=20°.
∴∠BAD=∠FAD=20°.④
∵AB=AC,AC=AF,
∴AB=AF.⑤
∵AD=AD,⑥
∴由④⑤⑥,得△DAB≌△DAF.
∴FD=BD.
∴FD=BD=FB.
∴∠DBF=60°.
∴∠CBD=30°.
(3)α=120°-m°,α=60°或α=240-m°
其他类似问题
问题1:2014海淀初三一模数学24题第3问
请参考:http://bbs.eduu.com/thread-2794450-1-1.html
问题2:北京市海淀区 中考一模 压轴题 第24题(数学)点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P[数学科目]
A(0,m)在新的函数图象上,其解析式为m-x=y^2 即x=0时,y=m,将A点代入,可得,m-0=m^2.
问题3:2013西城中考一模数学24题详解:在Rt△ABC中,∠ACB=90°,∠ABC=,点P在△ABC的内部.(1)如图1,AB=2AC,PB=3,点M、N分别在AB、BC边上,则cos=_______,△PMN周长的最小值为_______;(2)如图2,若条件AB=2AC不变,而PA=,PB[数学科目]
落雨凌蓝的方法是对的,因为对称P1B=PB=P2B,∠P1BP2=2∠ABC=60°,所以P1P2=3.MN=3/2,PM+PN>MN,所以△PMN周长的最小值为3
问题4:中考二十四题,如图一所示,一张三角形纸片ABC,角ACB=90°,AC=8,BC=6,沿着斜边AB的中线CD把这张纸片剪成三角形AC1D1和三角形BC2D2两个三角形{如图2所示}.将纸片三角形AC1D1沿着直线D2B[AB]方向平移[点A[数学科目]
(1)D1E=D2F,
∵C1D1∥C2D2,
∴∠C1=∠AFD2.
又∵∠ACB=90°,CD是斜边上的中线,
∴DC=DA=DB,即C1D1=C2D2=BD2=AD1,
∴∠C1=∠A,
∴∠AFD2=∠A,
∴AD2=D2F;
同理:BD1=D1E.
又∵AD1=BD2,
∴AD2=BD1.
∴D1E=D2F.
(2)∵在Rt△ABC中,AC=8,BC=6,
∴由勾股定理,得AB=10,
即AD1=BD2=C1D1=C2D2=5;
又∵D2D1=x,
∴D1E=BD1=D2F=AD2=5-x,
∴C2F=C1E=x,
∵在△BC2D2中,C2到BD2的距离就是△ABC的AB边上的高为245,△BC2D2的面积=12x5x245=12,
∴设△BED1的BD1边上的高为h,
∵C1D1∥C2D2,
∴△BC2D2∽△BED1,
∴5hx24=5-x5,
∴h=24(5-x)25,
∴△BED1的面积=12×BD1×h=12 ×(5-x)×24(5-x)25=12 25 (5-x)2,
又∵∠C1+∠C2=90°,
∴∠FPC2=90°;
又∵∠C2=∠B,
∴△C2FP∽△EC1P,
∴C2F:EC1=PF:C1P,
∴PC2=
∴△C2FP的面积=6 25 x2,
故y=△BC2D2的面积-△BED1的面积-△C2FP的面积=-16 25 x2+24
5 x.(0≤x≤5)
问题5:2012年沈阳市数学中考题24题第(3)问中的②问[数学科目]
是这题吗?
24.已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB= ,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上;
(3) 如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.
24. (1) 过点P作PQ⊥AB于点Q ∵PA=PB, ∠APB=120° AB=4
(3) ①8+4根号3 ②4+4根号3 <t≤8+4根号3
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
