同学们提问关于“编者的话400字_写一篇关于数学的作文,800字”的问题,52IJ师说平台通过网络上精心整理了以下关于“编者的话400字_写一篇关于数学的作文,800字”的一些有用参考答案。请注意:文中所谈及的内容不代表本站的真正观点,也请不要相信各种联系方式。下面是本网所整理的“编者的话400字_写一篇关于数学的作文,800字”的相关信息:
写一篇关于数学的作文,800字
科目: 关键词:编者的话400字长久以来,被誉为“科学皇后”的数学,在科技领域的拓展上,一直担当举足轻重的角色.随着社会的多元化发展,数学的应用更为广泛.但在数学课堂上,一般定义的解释、定理的证明和命题的解法,却忽视了从生活的经验去理解数学的需要.在日常生活中,我们其实既可用数学方法去理解周围的事物,更可利用生活的素材去加强对数学概念的认识,使数学知识注入生活的气息.
数学问题生活化———抽象的概念具体化,创设情景,侧重感知.
在数学教学中,从学生的生活经验和已有生活背景出发,联系生活讲数学,将抽象的数学概念、定理、公式、法则、规律等化解为一系列学生熟悉的有趣的丰富的生活中的事例,为学生提供大量的感性材料,让学生从初步的感知,逐步理解抽象的数学概念、定理和思想方法,同时也让学生了解了数学知识产生的背景,发展的过程.
近年来,随着数学改革的深入,很多教师已注意到在引进新知识时提供一两个实际背景,以便使学生理解数学源于生活.但仅仅如此并不能确保学生具有应用意识,也许抛开教师提供的实际背景 ,学生头脑中便难以找到其他的实际背景,依然会将所学知识和现实生活看成两个相互独立的系统,无法感受新知识的应用价值,这点给我们的教训是很深刻的.
生活问题数学化———实际问题抽象化,侧重建模.
对新课程来说,最重要的是学生真正理解数学.在这个意义下,数学建模和数学应用被证明是非常成功的.众所周知,数学有着广泛的应用,这是数学的基本特征之一.生产和科学技术的不断发展,为数学的应用提供了广阔的前景.数学的应用地位日益上升,数学建模正成为数学和科学工作者面临的重大课题.
所谓数学模型,是针对或参照某种事物的特征或数量关系,采用形式化的数学语言,概括地或近似的表述出来的一种数学结构.广义解释:凡一切数学概念、数学理论、各种数学公式、各种方程(代数方程、函数方程、微分方程、积分方程……)以及由公式系列构成的算法系统就可称之为数学模型.
数学的建模过程大致可用如下框图说明:
例如:换啤酒问题:小明的父亲从商店买回10瓶啤酒,商店规定3个空瓶可换回一瓶啤酒,若小明的父亲不再给钱,他一共可喝上多少瓶啤酒?
其解法是:10瓶喝完,可换回三瓶;再喝完,则剩余4个空瓶,又换回一瓶,喝后剩下2个空瓶,此时借进1空瓶,则又可换回1瓶,喝完后还所借1空瓶.总计可喝15瓶.此过程中“一借”可谓巧.
数学来自于生活,又必须回归于生活.数学只有在生活中才能赋予活力和灵性.数学学习内容远离生活无疑是导致学生对数学无兴趣的根本原因,它使本该生动活泼的数学学习活动变得死气沉沉.有鉴于此,数学的教与学应该富有生活气息,注重现实体验,变传统的“书本中学数学”为“生活中学数学”.
其他回答
这个比较困难,你应该多看数学书中编者的话
其他类似问题
问题1:谁能帮我写一篇数学作文300字多字.[数学科目]
生活中的数学
在我们的生活中,处处都要用到数学.
不信?今天发生的事就证明了这一点.下午,妈妈给我二十元钱叫我到超市去买一瓶酱油和一瓶蜂蜜.到超市后,我首先挑选了一瓶“豆亨”牌酱油,需要4.40元.接着,我去买蜂蜜,钱够的只有两种,第一种有8.60元,还有一种只要8.40元.我想:“第一种的六角和酱油的四角可以凑成一元,比较好计算,而且,第一种比第二种贵两角,说明质量也是第一种好.” 于是,我拿起第一种蜂蜜和酱油,到收银台付了钱,拿着找回的7元钱高高兴兴地回家了.晚上,小伙伴们请我去滑冰,我爽快地答应了.我想:“今天我要带巧克力去,大家一起平均分了吃.”带几颗好呢?我想了想,就带十二颗.如果来二个,12÷2=6,可以平均分;如果来三个人,12÷3=4,可以平均分……照这样计算,来1、2、3、4、6、12个小朋友都能平均分.于是,我拿起十二颗巧克力出门滑冰去了.果然,来了三个人,我给每人分了四颗巧克力,正好分完.
生活中有许许多多的数学知识,粗心的同学可得不到它!
问题2:求一篇数学论文 700到800字左右[政治科目]
数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”.这不禁让我重新对这一理念加以剖析.19世纪恩格斯说:“数学是关于空间形式和数量关系的学科.”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值.在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化.下面从三个方面谈谈自己的感想.
(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维.”
可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础.在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等.在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题.
数学与现实生活是密切相关的.联合国教科文组织早在八十年代初就提出“数学问题解决应作为学校数学教育的中心”.因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力.过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法.但在日常生活中恰恰是估算较笔算用得更为广泛.我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等.因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值.新课程标准也反复强调要加强估算,淡化笔算.观察是指人对周围事物或现象进行全面、深入的察看,按照事物或现象的本来面目,研究和确定它们的性质和关系的一种心理现象.数学教学活动中的观察,就是有意识地对事物的数和形的特点进行感知活动,即对符号、字母、数字或文字所表示的数学关系式、命题、几何图形的结构特点进行的察看.
数学教学中必须重视学生观察能力的培养,其理由是显而易见的:
首先,培养学生的观察能力是实现数学教学目标的需要.《义务教育全日制初级中学数学指导纲要》指出:初中数学教学,必须“使学生掌握数量关系、几何图形的基础知识和基本技能,具有一定的运算能力、处理数据的能力和初步的空间想象力、逻辑思维能力.”心理学告诉我们:感知和知觉是人类认识事物过程的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、有步骤、有组织的持久的知觉活动.观察又是一种主动的、对思维起积极作用的感知活动.它不单纯是事物在人的意识中的直接反映过程,还包括积极的思维活动.事实上,在观察过程中,观察者必须根据观察到的现象或特征随时进行分析、比较、抽象、概括,否则就无法通过观察来研究和确定事物或现象的性质和关系.可见,观察是认识的基础,是思想的触觉.离开了观察能力的培养,学生就不可能具备完整的数学能力与数学素养,数学教学的目标也就不可能直正实现.
其次,培养学生的观察能力是全面提高学生数学素质的需要.素质教育呼唤着学科教学以培养学生的创新精神和实践动手能力为宗旨,而创新能力必须以学生的综合素质为基础和前提.初中数学是一门学习简易的数学运算和图形关系知识及其初步应用技能的课程,以现代公民所必需的数学基础知识和技能作为基本的教学内容.数学教学要根据数学本身的特点,着重培养和发展学生的运算能力、处理数据的能力、逻辑思维能力、空间想象能力、数学信息的表达和交流能力.观察能力对于数学学习中各种能力的培养都具有直接或间接的促进作用.无论是图形的识别、数据之间关系的把握,还是基本规律的发现、综合分析能力的提高都离不开认真、仔细的观察.同时,数学活动中的观察并不狭义地指直观的考察,需要眼、脑并用,而且观察的对象也并非都具有直观的形象.因此,观察能力,无疑是学生数学综合能力的重要组成部分.
再次,培养学生的观察能力是提高学生数学学习质量和课堂教学效率的需要.不可否认,现在的初中数学教学中存在着学生学习的质量不高、课堂教学效率低下的弊端.究其原因,当然各种各样,但学生的观察能力滞后,缺乏观察的习惯和基本的能力是其中的一个重要的原因.试想,一个没有观察习惯、毫无观察能力的学生,怎么能够发现图形之间、数据之间的内在关系?惟其如此,学生数学学习的低质量、数学教学的低效率也就不足为怪了.可见,培养并提高学生的观察能力,是改革数学课堂教学的重要切入点和突破口之一.教师在教学的各个环节中,应落实观察的手段,充分显示这一教学观,切实重视对学生观察能力的培养.
那么,数学教学中如何培养学生的观察力呢?笔者以为可着重从以下几个方面入手:
一、 激发浓厚的观察兴趣
学习是由内在的心理因素引起的,内在的动机比外驱力更活跃、更持久,更具有主动性,而兴趣则是内在学习动机的集中体现.激发学生对观察产生浓厚的兴趣,教师可采用许多方法:
以美引趣.学生对美具有一种近乎天然的向往.数学具有自身的魅力,数学美集中在数学的简单、统一、对称、奇异等方面.数学图形所展现的外在形式美、数学的抽象概括性所体现的简单统一的内在美、数量关系与空间形式所呈现的对称美、数学思想所表现的奇异美的原则,充分利用数学自身的特征和特有的美,引导学生通过观察发现并发掘数学中的美,就能激发学生对观察的浓厚兴趣,激励学生求知的强烈愿望.
以用促趣.引导学生观察并解决实际中的数学问题,使学生真正认识观察在解答数学问题的重要作用,更能培养学生持久的观察兴趣.如在一元二次方程与系数的教学中提出如下观察材料:已知X1、X2是方程X2+(K+2)X-1=0的两个根,且X13-11X1=X2,求K的值.对于这个问题,教师通过启发学生得出:X1+X2=-(K+2)①,X1X2=-1②,X13-11X1=X2③,由此,根据与系数运用时含有的特性——对称性,要求学生进行如下观察:1、③式中的X1与X2的指数是否相等;2、能否用X1的倒数表示X2;3、通过②③两式形变等式,能否表示成两根的和与两根的积.在观察中发现简洁、明了的变形,实施解决疑难问题的方案.
以成导趣.成功的体验,能使学生产生愉悦的内心激动,使其增强学习的信心.在数学教学中,学生观察的对象是图形、数量关系、逻辑过程等.教师在教学过程中要尽可能鼓励学生主动观察,为学生创设获得成功的机会和条件.结合教材内容,有意识地向学生介绍数学通过观察发现数学定理、解决数学难题的事例,并设计一些富有趣味性的练习,让学生通过自己的观察、分析,总结概括出数学概念,发现公式、定理的证明,掌握那些特殊题型的解题技巧,品尝成功的喜悦,调动学生主动观察的积极性.
二、培养正确的观察方法
初中学生在心理上缺乏观察事物所必须具备的基本素质,在掌握知识经验的水平上缺乏观察的能力和数学教学的特点,因此,只有注重对学生观察方法的指导和培养,才能保证观察的正确性.
首先,要引导学生在观察时把握合理的顺序,养成学生从整体到局部,又由局部到整体的观察习惯.发现不合理的观察方法,应通过示范分析及时指出,加以指正.例如,在几何的起始教学中,对观察材料:已知如图A、B、C、D、E、F是直线上的六点,图中共有几条线段? A B C D E F 教师在指导学生进行观察,得出观察结论后,可进行提问:1、以A为端点的线段有几条?2、以B、C、D、E为端点的线段有几条?3、你的观察顺序与正确的观察顺序有何不同?借此引导学生认识有序观察事物的合理性与重要性.其次,要引导学生懂得观察的渐进性,养成反复观察、仔细观察的习惯.要真正提示内在规律,需要从不同的数学角度出发,进行广泛的观察:既要观察事物表面的、明显的特点,还要观察内在的、隐蔽的特征;既要观察已知的材料,又要观察未知的、隐含的关系.如在等腰三角形的教学中,对于观察材料: A 如图,在△ABC中,AB=AC, P是BC上任意一点,PE⊥AB于E, D PF⊥AC于F,CD⊥AB于D,求证CD=PE+PF. E F B C P 教师应启发学生按面积之和与大三角形面积相等的数量关系的角度和全等三角形的判定定理的角度进行观察,以求得一题多解.
再次,要引导学生了解常用的观察方法(如分类观察、从一般到特殊的观察、从特殊到一般的观察、对比观察等等),掌握观察的一般步骤:明确观察的目的和任务;制定周密的观察计划,做好有关知识的充分准备;在观察过程中做好观察记录;观察后对得到的材料进行整理、分析、归纳和总结.通过一定时间的训练,让学生能够较为熟练地自主观察.
三、养成良好的观察品质
观察不是消极的注视,不是被动的感知,而是一种“思维的知觉”,是智力发展的基础.因此,在培养学生观察能力时,必须十分重视观察的目的性、全面性、精确性、深刻性等良好观察品质的培养.
1、 培养观察的目的性
初中学生对观察材料缺乏全部感知的能力,总是有选择地以少数事物作为知觉的对象.教师在教学过程中,对观察对象叙述的语言要准确,提出观察任务时目标要明确,分析时要紧紧围绕确定的观察目的.例如,在利用配方法解一元二次方程中,对要求观察的材料:
解下列一元二次方程:①(X-1)2=2,②X2-2X+1=2,③X2-2X-1=0可提出如下观察要求:1、①式左、右两边的代数式有何特征?2、[MSOffice1]②式的左边能否转化为完全平方式?3、式的左边能否转化为完全平方式?通过提问,让学生有目的、分层次地观察,积极主动地感知观察对象,实现观察目的.
2、 培养观察的全面性
观察的全面性,要求通过观察反映事物的全貌以及事物的组成部分和相互联系;在较为复杂结构的图形中全面反映事物的某种属性;指出在某种特定的情况下感知对象所能发生的各种可能性.在观察中,由于学生缺乏对事物之间内在联系的全面理解,导致感知的对象不能反映各种可能的现象经常发生.在教学过程中,教师要帮助学生把握事物的基本属性,在初步观察的基础上,分析观察对象内在的规律性,鼓励学生依照一定的程序,深入观察.同时,教师要及时对观察的结果提出自己的观点,与学生相互讨论,对学生观察中出现的遗漏,要分析原因,加以补救,使观察结论全面、完整. 3、 培养观察的精确性
观察不能仅仅满足于了解事物的全貌,还要精确把握事物的特征,对不同事物既能发现它们的相似点,又能辨别它们的细微差别.教师要充分利用各种教学手段,如列表比较、对比观察等,利用现代教学手段,通过形象直观、富有动感的图片、画面,启迪学生发现观察对象的特征,揭示观察对象的本质.
4、培养观察的深刻性
观察的目的之一是提高学生的思维能力,因此,观察必须始终与思维训练紧密结合,尤其要重视对观察对象隐含条件的发掘,通过观察能力的培养,逐步使学生的数学思考意识抽象概括化、思考对象形式化、思考过程逻辑化、思考结果应用化.
总之,数学教学必须十分重视学生观察能力的培养:要运用多种手段,激发学生的观察兴趣;通过训练,使学生掌握观察的基本方法,具有良好的观察品质,逐步养成主动观察、善于观察的习惯,使数学教学更好地适应素质教育的需要.
[附]参考文献
1.浙江省教育委员会:《义务教育全日制初级中学数学教学指导纲要》,浙江教育出版社,1997年11月9第二版).
2.王子兴: 《中学数学教育心理研究》,湖南师范大学出版社,1999年5月9 第一版)
3.朱智贤: 《思维发展心理学》,北京师范大学出版社,1986年版.
从中筛选点有用的写吧!
问题3:帮忙写一篇数学小论文(八上)400字左右要在48小时后(初八9∶00之前)发给我,请尽量简单一点,易懂,叩谢.[数学科目]
其实网上很多的.
新春快乐!
问题4:.[数学科目]
有一篇六年级学生的小论文,谨供参考!
数学的色彩
清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了.突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多.我马上打断爷爷的话,告诉他:10+100-1=109(元).这时爷爷夸我,说我还算灵巧.这是早晨的数学题,我把数学定为红色.
上午,爸爸从银行交完电费回来,叫我计算电费.用电量是从1079-1279(度),每度电单价是0.38元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元.爸爸说没错,和电脑算得一样.我很得意,这时已近中午,我把数学定为黄色.
下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3.这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧.
夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了.
生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现.我爱数学,我要学好数学.
望能帮您!
问题5:同学们!有好的就推荐一下!最好是工程问题或时钟问题或分数应用题.[数学科目]
圆周率“π”的由来 很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法.公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
