同学们提问关于“李故_小李开车从甲地到乙地,出发后两小时,车在丙地出了故...[数学]”的问题,52IJ师说平台通过网络上精心整理了以下关于“李故_小李开车从甲地到乙地,出发后两小时,车在丙地出了故...[数学]”的一些有用参考答案。请注意:文中所谈及的内容不代表本站的真正观点,也请不要相信各种联系方式。下面是本网所整理的“李故_小李开车从甲地到乙地,出发后两小时,车在丙地出了故...[数学]”的相关信息:
小李开车从甲地到乙地,出发后两小时,车在丙地出了故...
科目:数学 关键词:李故1、先考虑两种走法,所用时间的差在哪段路造成的:
甲 丙 乙
正常走 维修 减速走
甲 丙 72千米 丁 乙
正常走 正常走 维修 减速走
对比参考图,维修时间相同,只不过下面这种走法“减速走”的路程较短,上面这种走法“减速走”的路程较长,因而迟到的时间不同.因为维修时间相同,所以时间只差在不同的走法的路段上.72千米是造成:2-1.5=0.5(小时)时间差的路段.在这段路的行驶过程中,速度只为正常速度的75%,可以写成比例形式:
减速速度与正常速度的比:3:4
下面要应用比例的知识了,当路程一定时,速度与时间成反比例,那么就得到:
减速速时间与正常时间的比:4:3,
就得到带分率的句子:
行驶这段路程时,减速速时间是正常时间的4/3,
那么就有量率对应(差的时间/差的分率):
0.5/(4/3-1)=1.5(小时)——正常行驶72千米时所用的时间.
乙的正常速度为:72/1.5=48(千米)
下面开始求全程:
40分钟=2/3小时
在第二种假设情况中, 比计划时间晚1.5小时,其中有修车耽误的40分钟,因此走“丁到乙”的这段路程减速走会比正常速度走多用1.5-2/3=5/6(小时)
根据 减速速时间与正常时间的比:4:3,那么得到减速速时间比正常时间多用1/3,所以量率对应得到:(5/6)/(1/3)=2.5(小时)————正常速度走“丁到乙”所用的时间
全程:48*2+72+48*2.5=288(千米)
下面我们分别来检验一下得数是否正确:
第一种走法:48*2+36*1.5+36*(6-2-72/48+2-2/3)=288(千米)
第二种走法:48*2+48*1.5+36*(6-2-72/48+1.5-2/3)=288(千米)
上面兖矿兴隆矿的列式有问题,应该在相同的路程上比时间,方程应改为:
设正常速度是x km/h,计划时间是y小时,那么,甲乙两地全程是x*ykm,则:
(xy-2x)/(75%*x)-72/x-[xy-(2x+72)]/(75%*x)=2-1.5
解得x=48,y=6
xy=288,你明白了吗?
其他回答
设小李正常行进速度为x千米/时:
2x+4/3x÷0.75=72+5/6x÷0.75
其他类似问题
问题1:一辆大货车与一辆小轿车同时从甲地开往乙地,小轿车到达乙地后立即返回,返回时速度提高50%.已出发2小时后,小轿车与货车第一次相遇,当大货车到达乙地时,小轿车刚好走到甲、乙两[数学科目]
设小轿车去时的速度为x,
则小轿车返回时的速度是:(1+50%)x=32
货车走完全程用的时间是:1x+12÷32x=43x(小时),
货车的速度是:1÷43x=34x,
两车相遇共同走的路程是全程的:1-34=14,
由等量关系式:小轿车去用的时间+14全程相遇用的时间=2小时,列方程得:
1x+14÷(32x+34x)=2,
解得1x+19×1x=2,
1x(1+19)=2,
x=59,
小轿车在甲、乙两地往返一次需要的时间是:
1÷59+1÷(32×59)=95+65=155=3(小时).
答:小轿车在甲、乙两地往返一次需要的时间是3小时.
问题2:问一道奥数题:有一个工人,在一家工厂上班,这个工人的一月工资是800元,由于种种原因,这个工人在干了21天以后,不能干了,问这个工厂应该给这个工人发多少钱的工资?第一:这道题在计算时,[数学科目]
800 * 21 / 30 = 80 * 7 = 560 元
问题3:商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走了其中五箱,已知一个顾客买的货物重量是另一个顾客的2倍,那么,商店剩下的一箱货物重量是( )千克. A.16B.[数学科目]
15+16+18+19+20+31=119(千克),
两人共买走的总量是:119-20=99(千克),
99÷3=33(千克),
一人买走的重量是:15+18=33(千克),
另一人买走的总量是:16+31+19=66(千克);
答:剩下的一箱货物重20千克.
故选:C.
问题4:甲、乙两人制作同样的零件,每人每3分钟都能制作一个零件.甲每制作2个零件要休息2分钟,乙每制作3个零件要休息1分钟.现在他们要共同完成制作202个零件的任务,最少需要多少分钟?[数学科目]
要想使用时间最少,应先让两人合作制作:
2×3+2=8分钟,即甲的效率为28
3×3+1=10分钟,即乙的效率为310;
二人合作,效率为28+310=1120,
即两人20分钟能制作11个零件.
202÷11=18…4个,
即两人两人同时做18个20分钟就可以做11×18=198个,还剩4个,
剩下四个一人两个,需要2×3=6分钟就可以完成,
共需要20×18+6=366(分钟).
答:最少需要366分钟.
问题5:2的55次幂,3的44次幂,4的33次幂,哪个大一点,[数学科目]
需要换成同次幂,即2的55次幂=32的11次幂,3的44次幂=27的11次幂,4的33次幂=64的11次幂,4的33次幂>2的55次幂>3的44次幂
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
