欢迎您访问52IJ教育培训网,今天小编为你分享的高考数学方面的学习知识是通过网络精心收集整理的:“麦克斯韦速率分布_平衡气体为什么沿麦克斯韦速率分布函数分布?[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
亲爱的楼主:
根据麦克斯韦在1859年发表的论文《气体动力理论的说明》,速度分布率和速率分布率的推导过程大致如下:
设总粒子数为N,粒子速度在x,y,z三个方向的分量分别为v(x),v(y),v(z).
(1)以dNv(x)表示速度分量v(x)在v(x)到v(x)+dv(x)之间的粒子数,则一个粒子在此dv(x)区间出现的概率为dNv(x)/N.粒子在不同的v(x)附近区间dv(x)内出现的概率不同,用分布函数g(v(x))表示在单位v(x)区间粒子出现的概率,则应有
dNv(x)/N=g(v(x))dv(x)
系统处于平衡态时,容器内各处粒子数密度n相同,粒子朝任何方向运动的概率相等.因此相应于速度分量v(y),v(z),也应有相同形式的分布函数g(v(y)),g(v(z)),使得相应的概率可表示为
dNv(y)/N=g(v(y))dv(y)
dNv(z)/N=g(v(z))dv(z)
(2)假设上述三个概率是彼此独立的,又根据独立概率相乘的概率原理,得到粒子出现在v(x)到v(x)+dv(x),v(y)到v(y)+dv(y),v(z)到v(z)+dv(z)间的概率为
dNv/N=g(v(x))g(v(y))g(v(z))dv(x)dv(y)dv(z)=Fdv(x)dv(y)dv(z)
式中F=g(v(x))g(v(y))g(v(z)),即为速度分布函数.
(3)由于粒子向任何方向运动的概率相等,所以速度分布应与粒子的速度方向无关.因而速度分布函数应只是速度大小v=√(v(x)2+v(y)2+v(z)2)的函数.这样,速度分布函数就可以写成下面的形式:
g(v(x))g(v(y))g(v(z))=F(v(x)2+v(y)2+v(z)2)
要满足这一关系,函数g(v(x))应具有C*exp(A*v(x)^2)的形式.因此可得
F=C*exp(A*v(x)2)*C*exp(A*v(y)2)*C*exp(A*v(z)2)=C3exp(Av2)
下面来定常数C及A.考虑到具有无限大速率的粒子出现的概率极小,故A应为负值.令A=-1/α2,则
dNv/N=C3exp(-v2/α2)dv(x)dv(y)dv(z)=C3exp[-(v(x)2+v(y)2+v(z)2)/α2]dv(x)dv(y)dv(z)
由于粒子的速率在从-∞到+∞的全部速率区间内出现的概率应等于1,即分布函数应满足归一化条件,所以
∫dNv/N=C3∫exp(-v(x)2/α2)dv(x)∫exp(-v(y)2/α2)dv(y)∫exp(-v(z)2/α2)dv(z)=C3√(πα2)3=1,
可得C=1/(α√π),从而得到麦克斯韦速度分布律:
dNv/N=(α√π) ̄3exp(-v2/α2)dv(x)dv(y)dv(z)=(α√π) ̄3exp[-(v(x)2+v(y)2+v(z)2)/α2]dv(x)dv(y)dv(z)
(4)由上式还可导出速率分布律.可以设想一个用三个相互垂直的轴分别表示v(x),v(y),v(z)的“速度空间”.在这一空间内从原点到任一点(v(x),v(y),v(z))的连线都代表一个粒子可能具有的速度.由于速率分布与速度的方向无关,所以粒子的速率出现在同一速率v处的速率区间dv内的概率相同.这一速率区间是半径为v,厚度为dv的球壳,其总体积为4πv2dv,从而可得粒子的速率在v到v+dv区间出现的概率为
dNv/N=4π(α ̄3/√π)exp(-v2/α2)v2dv
(5)确定常数α.由上式可求出粒子速率平方的平均值为
=∫v2*4π(α ̄3/√π)exp(-v2/α2)v2dv=1.5α2,
而由压强微观公式p=nm/3和理想气体状态方程pV=NkT=nVkT得
=3kT/m,故α2=2kT/m,
从而可得速度分布率
F(v)=dNv/(Ndv(x)dv(y)dv(z))=√(m/2πkT)3exp(-mv2/2kT)
和速率分布率
f(v)=dNv/(Ndv)=4π√(m/2πkT)3v2exp(-mv2/2kT),
沿x方向的速度分量v(x)的分布率应为
g(v(x))=dNv/(Ndv(x))=√(m/2πkT)exp(-mv(x)2/2kT).
祝您步步高升
其他类似问题
问题1:麦克斯韦气体速率分布函数.麦克斯韦是怎样推出气体速率分布函数的?(要有具体的式子来说明,一定要具体!)[数学科目]
希望下面的回答能让你满意:
根据麦克斯韦在1859年发表的论文《气体动力理论的说明》,速度分布率和速率分布率的推导过程大致如下:
设总粒子数为N,粒子速度在x,y,z三个方向的分量分别为v(x),v(y),v(z).
(1)以dNv(x)表示速度分量v(x)在v(x)到v(x)+dv(x)之间的粒子数,则一个粒子在此dv(x)区间出现的概率为dNv(x)/N.粒子在不同的v(x)附近区间dv(x)内出现的概率不同,用分布函数g(v(x))表示在单位v(x)区间粒子出现的概率,则应有
dNv(x)/N=g(v(x))dv(x)
系统处于平衡态时,容器内各处粒子数密度n相同,粒子朝任何方向运动的概率相等.因此相应于速度分量v(y),v(z),也应有相同形式的分布函数g(v(y)),g(v(z)),使得相应的概率可表示为
dNv(y)/N=g(v(y))dv(y)
dNv(z)/N=g(v(z))dv(z)
(2)假设上述三个概率是彼此独立的,又根据独立概率相乘的概率原理,得到粒子出现在v(x)到v(x)+dv(x),v(y)到v(y)+dv(y),v(z)到v(z)+dv(z)间的概率为
dNv/N=g(v(x))g(v(y))g(v(z))dv(x)dv(y)dv(z)=Fdv(x)dv(y)dv(z)
式中F=g(v(x))g(v(y))g(v(z)),即为速度分布函数.
(3)由于粒子向任何方向运动的概率相等,所以速度分布应与粒子的速度方向无关.因而速度分布函数应只是速度大小v=√(v(x)²+v(y)²+v(z)²)的函数.这样,速度分布函数就可以写成下面的形式:
g(v(x))g(v(y))g(v(z))=F(v(x)²+v(y)²+v(z)²)
要满足这一关系,函数g(v(x))应具有C*exp(A*v(x)^2)的形式.因此可得
F=C*exp(A*v(x)²)*C*exp(A*v(y)²)*C*exp(A*v(z)²)=C³exp(Av²)
下面来定常数C及A.考虑到具有无限大速率的粒子出现的概率极小,故A应为负值.令A=-1/α²,则
dNv/N=C³exp(-v²/α²)dv(x)dv(y)dv(z)=C³exp[-(v(x)²+v(y)²+v(z)²)/α²]dv(x)dv(y)dv(z)
由于粒子的速率在从-∞到+∞的全部速率区间内出现的概率应等于1,即分布函数应满足归一化条件,所以
∫dNv/N=C³∫exp(-v(x)²/α²)dv(x)∫exp(-v(y)²/α²)dv(y)∫exp(-v(z)²/α²)dv(z)=C³√(πα²)³=1,
可得C=1/(α√π),从而得到麦克斯韦速度分布律:
dNv/N=(α√π) ̄³exp(-v²/α²)dv(x)dv(y)dv(z)=(α√π) ̄³exp[-(v(x)²+v(y)²+v(z)²)/α²]dv(x)dv(y)dv(z)
(4)由上式还可导出速率分布律.可以设想一个用三个相互垂直的轴分别表示v(x),v(y),v(z)的“速度空间”.在这一空间内从原点到任一点(v(x),v(y),v(z))的连线都代表一个粒子可能具有的速度.由于速率分布与速度的方向无关,所以粒子的速率出现在同一速率v处的速率区间dv内的概率相同.这一速率区间是半径为v,厚度为dv的球壳,其总体积为4πv²dv,从而可得粒子的速率在v到v+dv区间出现的概率为
dNv/N=4π(α ̄³/√π)exp(-v²/α²)v²dv
(5)确定常数α.由上式可求出粒子速率平方的平均值为
=∫v²*4π(α ̄³/√π)exp(-v²/α²)v²dv=1.5α²,
而由压强微观公式p=nm/3和理想气体状态方程pV=NkT=nVkT得
=3kT/m,故α²=2kT/m,
从而可得速度分布率
F(v)=dNv/(Ndv(x)dv(y)dv(z))=√(m/2πkT)³exp(-mv²/2kT)
和速率分布率
f(v)=dNv/(Ndv)=4π√(m/2πkT)³v²exp(-mv²/2kT),
沿x方向的速度分量v(x)的分布率应为
g(v(x))=dNv/(Ndv(x))=√(m/2πkT)exp(-mv(x)²/2kT).
问题2:麦克斯韦气体速率分布函数数值就是这个函数f(v)的数值究竟受哪些因素影响,不同气体同一温度下的函数图象是怎样的,函数的数值有怎样的差别[数学科目]
麦克斯韦是怎样推出气体速率分布函数的?请高人指点!(要有具体的式子来说明希望下面的回答能让你满意:根据麦克斯韦在1859年发表的论文《气体动力理论的
问题3:麦克斯韦气体分子速率分布函数的积分等于一代表的物理意义[数学科目]
数学上代表图像与x轴所围成的面积是1,
概率上是代表气体的速率在0~正无穷之间的概率是100%.
问题4:关于麦克斯韦速率分布函数1.为什么可以引入W呢,以此来代替麦克斯韦速率分布函数中的V,是何物理意义呢.2:f(W)Delta(W)算出来和右边不等啊,还有一些常数(m0/2kT)哪去了?
w是为了方便计算而引入的,相当于数学上的变量代换.可以不引入,计算方法如下:
麦克斯韦速率分布函数为
f(v) = 4π(m/(2πkT))^(3/2) exp(-mv^2/(2kT)) v^2
vp = (2kT/m)^(1/2),另外上式中的v也在vp附近,所以上式可写成
f(vp) = 4/√π vp^(-3) exp(-1) vp^2 = 4/√π exp(-1) / vp
ΔN/N = f(vp) Δv = 4/√π exp(-1) Δv / vp = 4/√π exp(-1) 2%
= 1.66 %
问题5:麦克斯韦速率分布函数的归一化条件[数学科目]
∫ f(v)dv = 1
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
