欢迎您访问52IJ教育培训网,今天小编为你分享的数学方面的学习知识是通过网络精心收集整理的:“数学规划_数学建模中规划的分类时常有什么线性规划和非线性规...[物理]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
可以分为 按是否线性 分为线性规划 和 非线性规划 一次是线性的 其他就是非线性的 按是否份过程阶段 分动态规划 非动态规划 按目标函数的多少分 可以分单目标规划 和 多目标规划
其他回答
线性规划是数学规划模型里面最简单,最基础的一类。
数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。
中学学的线性规划一般是二维的,在一个平面上画几根线就可以确定约束条件下的解的可行域。对于多维的线性规划而言可行域是一个多维的空间,用手工求解很...
其他类似问题
问题1:数学建模的规划方法都有哪些啊?每种规划都有什么特点?适合什么问题的应用?知道的说下,[语文科目]
可以分为:按是否线性可分为线性规划和非线性规划,一次是线性的,其他就是非线性的,按是否份过程阶段 分动态规划和非动态规划,按目标函数的多少分,可以分单目标规划和多目标规划 .
线性和非线性的比较常见,我说说其他的吧.
动态规划(dynamic programming)是运筹学的一个重要分支,它是解决多阶段决策问题的一种有效的数量化方法.动态规划是由美国学者贝尔曼(R.Bellman)等人所创立的.1951年贝尔曼首先提出了动态规划中解决多阶段决策问题的最优化原理,并给出了许多实际问题的解法.1957年贝尔曼发表了《动态规划》一书,标志着运筹学这一重要分支的诞生.
动态规划从创立到现在五十多年来,无论在工程技术,企业管理还是在工农业生产及军事等部门都有广泛的应用,并获得了显著的效果.在管理方面,动态规划可用于资源分配问题,最短路径问题,库存问题,背包问题,设备更新问题,最优控制问题等等.所以动态规划是现代管理学中进行科学决策不可缺少的工具.
动态规划的优点在于,它把一个多维决策问题转化为若干个一维最优化(optimization)问题,而对一维最优化问题一个一个地去解.这种方法是许多求极值方法所做不到的,它几乎优于所有现存的优化方法.除此之外,动态规划能求出全局极大或极小,这一点也优于其他优化方法.需要指出的是,动态规划是求解最优化问题的一种方法,是解决问题的一种途径,而不是一种新的算法.在前面我们学习了用单纯形解线性规划问题,凡是具有线性规划问题那样统一的数学模型都可以用单纯形法去求解,而动态规划问题的求解却没有统一的方法(类似于单纯形法).因此在用动态规划求解最优化问题中,必须对具体问题具体分析,针对不同的问题,使用动态规划的最优化原理(optimization principle)和方法,建立起与其相应的数学模型,然后再用动态规划方法去求解.根据动态规划这些特点,要求我们在学好动态规划的基本原理和方法的同时,还应具有丰富的想象力,只有这样才能建好模型求出问题的最优解.
可根据时间变量是离散的还是连续的,把动态规划问题的模型分为离散决策过程和连续决策过程,根据决策过程的演变是确定性的还是随机性的,动态规划问题的模型又可分为确定性的决策过程和随机性的决策过程,即离散确定性,离散随机性,连续确定性,连续随机性四种决策过程模型.我们主要研究离散确定性模型.
2.随机规划和模糊规划是处理随机和模糊优化问题的两大数学规划工具,称之为不确定规划.主要目的是为不确定环境中的优化理论奠定一个基础.不确定规划理论由三大类组成:期望值模型,机 会约束规划和相关机会规划.
3.随机规划的概念比较少见
可以参考一下运筹学的分支
数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案.它可以表示成求函数在满足约束条件下的极大极小值问题.
数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况.而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视.
这里最简单的一种问题就是线性规划.如果约束条件和目标函数都是呈线性关系的就叫线性规划.要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具.
线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用.许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实.
非线性规划是线性规划的进一步发展和继续.许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴.非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展.还有一种规划问题和时间有关,叫做“动态规划”.近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具.
排队论是运筹学的又一个分支,它有叫做随机服务系统理论.它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题.比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等.
排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来.
因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具.此外,还有微分和微分方程.排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待.如果服务台以被其它顾客占用,那么就要排队.另一方面,服务台也时而空闲、时而忙碌.就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布.
排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等.
对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题.作为运筹学的一个分支,博弈论的发展也只有几十年的历史.系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼.
最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法.由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用.近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论.近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求.
搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支.主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法.在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的.搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的.
运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面.
应该排队论和随机规划是比较接近的
具体的还希望你问一下专业的老师
希望对你有帮助
问题2:有哪些数学模型可以用于分类出人工网络模型外 还有哪些
很多,非常多,我所知道的统计模型就有好几个:判别分析模型、聚类分析模型等等,前者是基于总体来划分样本的分类,后者是在不知道样本的具体归类情况下,根据它们的统计特点来进行分类.还有一类计算机领域下基于数据挖掘而做的学习机分类的模型,就是一边学习数据特点一边来进行模型,这一类非常成功地应用在中医药方的分类上.你如果是写综述的话,这些模型底下还有各种不同的分类,如果你是想进行具体的应用于的话,你给个问题背景我们再来讨论.
问题3:数学建模——设计,急某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:千米 )及水泥日用量d(吨)由下表给出.目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨[数学科目]
供大于求
使用lingo:
sets:
supply/1.2/:d;
demand/1...6/:x,y,m;
weizhi(x,y);
endsets
data:
x=1.25 8.75 0.5 5.75 3 7.25;
y=1.25 0.75 4.75 5 6.5 7.25;
m= 3 5 4 7 6 11;
enddata
min=@sum(demand(i):((x-5)^2+(y-1)^2)^(1/2)+((x-2)^2+(y-7)^2)^(1/2)));
@for(demand(j):@sum(supply(i):d(i))=m(j));
end
问题4:数学建模策划书包含具体时间 具体内容[语文科目]
数学建模论文基本格式
摘要 (200-300字,包括模型的主要特点、建模方法和主要结果.)
关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录
1.问题重述
2.问题分析
3.模型假设与约定
4.符号说明及名词定义
5.模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);
6.进一步讨论(参数的变化、假设改变对模型的影响)
7.模型检验 (使用数据计算结果,进行分析与检验)
8.模型优缺点(改进方向,推广新思想)
9.参考文献及参考书籍和网站
10.附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格.)
小经验:
1.随时记下自己的假设.有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨.
2.随时记录自己的想法,而且不留余地的完全的表达自己的思想.
3.要有自己的特色,闪光点.
如何撰写数学建模论文
当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文.撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的.事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题.
首先要明确撰写论文的目的.数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中.当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的.其次,要注意论文的条理性.
下面就论文的各部分应当注意的地方具体地来做一些分析.
(一) 问题提出和假设的合理性
在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉.列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题.历届数学建模竞赛的试题可以看作是情景说明的范例.
对情景的说明,不可能也不必要提供问题的每个细节.由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣.所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系.这部分内容就应该在论文的“问题的假设”部分中体现.由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:
(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解.
(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考.
(3)假设应验证其合理性.假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到.对于后者应指出参考文献的相关内容.
(二) 模型的建立
在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件.论文中用到的各种数学符号,必须在第一次出现时加以说明.总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据.
(三)模型的计算与分析
把实际问题归结为一定的数学问题后,就要求解或进行分析.在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出).还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果.基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论.
有些模型(例如非线性微分方程)需要作稳定性或其他定性分析.这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论.
在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来.结论使用时要注意的问题,可以用助记的形式列出.定理和命题必须写清结论成立的条件.
(四) 模型的讨论
对所作的数学模型,可以作多方面的讨论.例如可以就不同的情景,探索模型将如何变化.或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化.还可以用不同的数值方法进行计算,并比较所得的结果.有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化.
通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围.
除正文外,论文和竞赛答卷都要求写出摘要.我们不要忽视摘要的写作.因为它会给读者和评卷人第一印象.摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意.
语言是构成论文的基本元素.数学建模论文的语言与其他科学论文的语言一样,要求达意、干练.不要把一句句子写得太长,使人不甚卒读.语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句.在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态.
最后,论文的书写和附图也都很重要.附图中的图形应有明确的说明,字迹力求端正.
(非原创)
问题5:数学建模怎样设计?急需?
多找一些往年的获奖的论文,好好的研究一下.另外还要有团队的协助!
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
