欢迎您访问52IJ教育培训网,今天小编为你分享的学习资料方面的学习知识是通过网络精心收集整理的:“比的应用教学设计_六年级数学一个数比另一个数多( 少)百分之几的应用题...[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
【教学内容】P1,例1
【教学目的】通过教学,使学生会将已学过的百分数知识用来解决实际问题,并理解百分数应用题和分数应用题的相通之处.
【教学过程】
一、复习导入
东山村去年原计划造林16公顷,实际造林20公顷.实际造林是计划的百分之几?(先说一说要怎样想再解答)
把问题改为“实际造林是计划多百分之几?”这就成为一道百分数应用题.(揭示课题)
二、教学新课
一教学例1.
1、提问:这道百分数应用题你会解答吗?会做的试一试你能说出你是怎样想的吗?
2、师板书,
解法一:20÷16=1.25=125% 125%-100%=25%
解法二:20-16=4(公顷) 4÷16=25%
解法三:20÷16=1.25=125% 125%-1=25%
答:实际造林比计划多20%.
3、归纳:这道百分数应用题,我们已经会解答了,它和以前学过的百分数应用题相同吗?这是为什么?
4、练一练:
P1 试一试 (两生板演,其他学生练习本上练习.
(二)教学补充题
1、我班有男生20人,女生25人.女生人数比男生多百分之几?提问:你能解答出这道百分数应用题吗?
列举出不同解法,请解答者说出思路.
(25-20)÷20 25÷20-100% 25÷20-1
=5÷20 =125%-100% =125%-1
=25% =25% =25%
答:女生人数比男生多25%.
2、我班有男生20人,女生25人,( )生人数比( )生( 少 )百分之几?
将上题补完整(男生人数比女生少百分之几?)
这道题与上题相同吗?为什么?
3、讨论:
上两题计算结果相同吗?为什么?
(注意:单位“1”的量不同)
三、巩固练习
P1,练一练.
四、作业:P2,1、2、3、4
五、教学反思:
通过对问题是多(或少)百分之几的应用题的教学,大部分同学能够独立地用多种方法解答这类应用题,并能理解这样解的原因,但仍有极少数同学只会用一种方法求解.所以,今后对于这部分学生我和全班同学要在课后对他们多加指导.
其他回答
学校值日,小明搬了10个凳子,小红搬了15个凳子小明比小红少搬百分之几?
其他类似问题
问题1:求一个数比另一个数少几的应用题 教学设计[数学科目]
小明有7个苹果,小东有12个苹果,那么小明比小东少几个苹果?
小明有3个苹果,小东的苹果是小明的3倍,那么小明比小东少几个苹果?
我可以造出各种变形的题目,如果你说的要求更加详细或者需要更多的题目,
问题2:快求人教版6年级上应用题[数学科目]
1、小于400的自然数中不含数字8的数有(339)个.
2、有9枚铜钱,其中一枚是假的,真假只是质量不同,用无砝码的天平,至少称(8)次,就肯定能够将假铜钱找出来.
3、在公路上每隔100千米有一个仓库,共5个仓库.1号仓库存货10吨,2号仓库存货20吨,5号仓库存货40吨,其余两个仓库是空的,现在想把所有的货物集中放在一个仓库里,若每吨货物运输1千米要1元运费,那么至少要花费(10000)元运费才行.
1号100千米2号100千米3号100千米4号100千米5号
10吨 20吨 40吨
4、六年级共有学生207人,选出男生的2/11 和7名女生参加数学竞赛,剩下的男女生人数相同,六年级有女生(97)人.
5、小兰和小丽玩猜数游戏,小兰在直条上写了一个四位小数,让小丽猜.小丽问:“是6031吗?”小兰说:“猜对了一个数字,且位置正确.”小丽又问:“是5672吗?”小兰说:“猜对了两个数字,且位置都不正确.”小丽再问:“是4796吗?”小兰说:“猜对了四个数字,但位置都不正确.”你能根据以上信息,推断出小兰写的四位数吗?6974
6、如果20只兔子可以换2只羊,8只羊可以换2头猪,8头猪可以换2头牛,那么用4头牛可以换多少只兔子?640
7、蓝蓝今年8岁,爸爸今年38岁,蓝蓝多少岁时,爸爸的年龄正好是蓝蓝的4倍? 10
8、为民冷饮店每3个空汽水瓶可以换1瓶汽水,蓝蓝在暑假里买了99瓶汽水,喝完后又用空瓶换汽水,那么她最多能喝到多少瓶汽水? 147
9、在一道除法算式里,被除数、除数、商、余数四个数的和为75,已知商是8,余数是2,被除数是多少,除数是多少?
58 7
10、有两根同样长的铁丝,第一根减去30厘米,第二根减去18厘米,第二根余下的是第一根所余下长度的2倍,第二根铁丝还剩多少厘米?24
11、有1,2,3,4,5,6,7,8,9的牌,甲、乙、丙各三张,甲说:“我的三张牌的积是48”,乙说:“我的三张牌之和是15”,丙说:“我的三张牌的积是63”,甲、乙、丙各拿什么牌?
238 564 179
12 、用24厘米长的铁丝可以围成几种不同的长方形(长与宽整厘米数且接头处不计),面积分别是多少?再比较一下,你能发现什么? 6
13、 张师傅习惯每工作5天休息2天.最近接到了生产330个零件的任务,他每天生产30个,那么完成这批任务至少需要多少天?15
14、星期天,小辉乘出租车去看望8千米外的外婆.乘车时,他看了出租车上的车费牌价:5千米以内8元;5千米以上每千米2元.小辉到外婆家时,应付车费多少元?
14
15、 一个小数,如果把它的小数部分扩大4倍,就得到5.4;如果把它的小数部分扩大9倍,就得到8.4,那么这个小数是多少?3、6
16、甲、乙二人的平均身高是1.66米,乙、丙二人的平均身高是1.7米,甲、丙二人的平均身高是1.65米,那么甲乙丙三人的平均身高是多少?
1.67
17、 甲、乙、丙三个数之和为270,甲数是乙数的3倍,乙数是丙数的2倍,问甲、乙、丙三个数各是多少?
180 60 30
18、 有A、B两个煤场,A煤场是B煤场存煤的3倍,若从A煤场运出180吨到B煤场,则两煤场存煤相等,原来A、B两煤场各存煤多少吨?
540 180
19、5个队员排成一列做操,其中1个新来的队员不能站在排首,有多少种不同的排法?
96
20、六(1)班有50人,会游泳的有25人,会体操的有28人,都不会的有5人,既会游泳又会体操的有多少人?8
21、青年号轮船在一条河里顺水而行120千米要用6小时,逆流而行280千米要用20小时.这只轮船在静水中航行340千米要用多少小时?
20
22、将分母为15的所有最简假分数由小到大依次排列,问第99个假分数的分子是多少?
214
23、用96朵红花和72朵白花扎成花束,如果每个花束里红花的朵数相同,白花的朵数也相同,每个花束里至少有多少朵花?
84
2、参加大型团体操的同学共有240名,他们面对教练站成一排,自左至右按1、2、3、4、……依次报数,教练让每个同学记住自己报的数并做以下动作:先让报数字3的倍数的同学向后转,接着又让报数是5的倍数同学向后转,最后让报数是7的倍数的学生向后转,问此时还有多少学生面对教练?34+80+48-16-6-11=162-33=129
1. 山村邮递员从邮局翻过山顶送邮件到用户家共行23.5千米,用了6.5小时.他上山速度为每小时行3千米,下山速度为每小时行5千米.问用不变的上山下山速度原路返回,要用多少时间?
4.7
1. 8 8 3 3 用+ - * / ( )算出24.
2.3 3 7 7用+ - * / ( )算出24.
3.客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
AN:10秒.
4.计算1234+2341+3412+4123=?
5. 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
6. 求和0.1+0.3+0.5+0.7+.+0.87+0.89=?
7.现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
8.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地.每小时60千米的速度行驶了几小时?
9..笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚.笼中原有兔、鸡各多少只?
10.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀.蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀,每种小虫各几只?
11.学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件.参加这次活动的小同学有多少人?
12.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?
13.书架上有6本不同的语文书,4本不同的外语书,3本不同的数学书,从中任取语文,外语,数学书各一本,有多少种不同的取法?
14.某班学生植树,共有杉树苗与杨树苗100棵.每小组分杉树苗6棵,杨树苗8棵.这样,杉树苗正好分完,而杨树苗还剩2棵.原来杉树苗与杨树苗各有多少棵?
15.用8千克丝可以织6分米宽的绸4米,现在有10千克丝,要织7.5分米宽的绸,可以织几米?
16.下面是一个11位数,每三个相邻数字之和都是15,你知道问号表示的数是几吗?这个11位数是多少?
17..甲、乙、丙三人一共买了8个面包平均分着吃,甲付5个面包的钱,乙付3个面包的钱,丙没带钱.经计算,丙应该付4元钱,甲应收回多少钱?
18.有甲、乙、丙、丁、戊五个足球代表队进行比赛,每个队都要和其他队赛一场,总共要塞多少场?
19.12枚硬币的总值是1元,其中只有5分和1角两种,问每种硬币多少个?
20..甲乙两人去商店买衣服,甲原有100元钱,乙原有70元钱,两人买了同样价格的衣服后,结果发现甲剩下的钱恰好是乙剩下的钱的4倍.问甲乙买衣服各用了多少元钱?
21.57辆军车排成一列通过一座桥,前后两辆车之间都保持2米的距离.桥长200米,每辆军车长5米.从第一辆车头到最末一辆车尾共长多少米?
22.买18张桌子和6把椅子共要1560元,10张桌子的价钱比6把椅子的价钱多680元,问每张桌子多少钱?每把椅子多少钱?
23. .甲.乙两个储油罐,甲比乙的储油量少,把1/4乙中的1/6输入甲,甲中储油量比乙多2吨.乙原有油多少吨?
24.工厂组织400-450人参加植树活动,平均每人植32棵.男职工平均每人植树48棵,女职工平均每人植树13棵.参加植树的男.女职工各有多少人?(用比例求人数)
25.甲.乙.丙三仓库存有救灾物资,甲有120件,乙是甲.丙两仓库之和,丙是甲.乙仓库的一半,救灾物资一共有多少件?
26..甲.乙.丙三组共装电视机500台.甲.乙两组装配台数的比是5:3,丙比乙少装39台.丙装了几台?(假设丙多装39台)
27.甲.乙两地相距243KM,一辆货车和客车同时从甲.乙两地出发,相向而行,经过1.5小时相遇.货车和客车的速度比是4:5,那么,客车行完全程要多少小时?(两种方法)
28.一个日用化工厂生产洗衣皂9800想,比生产的香皂多5/9.生产洗衣皂和香皂一共多少箱?(变分率巧解题)
29.小明和小聪分别在60米跑道两端同时出发来回跑步,小明每秒跑2米,小聪每秒跑3米,他俩不停地跑了5分钟,这期间他俩迎面相遇几次?
30.小强买了三支铅笔,三支圆珠笔,八本笔记本和十二块橡皮,售货员说共要付13元1角,已知铅笔4角一支,圆珠笔2元8角一支,问售货员的帐有没有算错
31.一项工程,甲独做要3天,乙独坐要5天.现甲先做1天剩下的甲乙合作还要几天完成?
32.乙仓大米是甲仓的4/5,如果从甲仓调4吨大米到乙仓,则甲,乙两仓大米重量的比是3:4,甲.乙两仓原来各存大米多少吨?
33.7点什么分的时候,分针落后时针100度?
34.两辆汽车从A、B两地同时出发、相向而行,甲每小行50千米,乙每小行60千米,经过3.5小时相遇.A、B两地相距多少千米?(用两种方法解答)
35.小明与小清家相距4.5千米,两人同时骑车从家出发相向而行,小明每分钟行50米,小青每分钟行40米,经过几分钟两人相遇?
36.小明与小清家相距4.5千米,两人同时骑车从家出发相向而行,小明每分钟行50米,小青每分钟行40米,经过几分钟两人相遇?
37.客车和货车同时从两城出发,相向而行,客车每小时行45千米,比货车每小时多行3千米,经过4小时两车相遇.两城相距多少千米?
两个工程队同时从两端开一条长850米的隧道,甲队每天开凿26米,乙队每天开凿24米,经过几天就可以打通?
6、师徒两个人合作加工一批零件,师傅每小时加工68个,徒弟每小时加工55个,合作6小时完成任务,这批零件一共有多少个?
7、加工厂用两台磨面机同时磨面17280千克,第一台磨面机每小时磨面364千克,第二台磨面每小时磨面356千克,如果每天加工8小时,磨完这些面粉需要多少天?
二、同时出发,相背而行
1、甲、乙两人同时从学校出发向反方向行去.甲每分钟走60米,乙每分钟走70米,5分钟后两人相距多少米?(用两种方法解答)
第一种方法: 第二种方法:
2、两辆汽车同时从一个工厂出发,相背而行,一辆汽车每小时行33千米,另一辆汽车每小时行42千米.多少分钟后两车相距15千米?
三、同时出发、相向而行,不相遇
1、甲、乙两站间的铁路长560千米,两列火车同时从两站相对开出,一列火车每小时行63.5千米,另一列火车每小时行80.5千米,3小时后两列火车还相距多少千米?
2、货车和客车同时从甲、乙两地相对开出,货车每小时行57.5千米,客车每小时行45.8千米,3小时后两车相距100千米,甲、乙两地相距多少千米?
3、师徒两人共同加工312个零件,师傅每小时加工45个,徒弟每小时加工35个,加工几小时后还剩40个?
四、不同时出发,相向而行
1、甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米,甲车开出1小时后,乙车才出发,5小相遇.两地间的铁路长多少千米?(用两种方法解答)
第一种方法: 第二种方法:
2、甲、乙两港的水路长726千米,一艘货轮从甲港开往乙港,每小时行69千米,1小时后,一艘客轮从乙港开住甲港,每小时行77千米,客轮开出后几小时与货轮相遇?相遇时客轮和货轮各行了多少千米?
3、一批零件478个,甲每小时加工50个,乙每小时加工32个,甲先加工3小时余下的两人合作完成,再过几小时完成任务?
五、同时、同地点出发、同方向行驶
甲、乙两人同时骑车从A地到B地,甲每小时行14.2千米,乙每小时行18.7千米.8小时后两人相距多少千米?(用两种方法解答)
第一种方法: 第二种方法:
行程应用题
1、客货两车分别相距387千米的甲、乙两地相对开出,客车先行1小时,每小时行72千米,货车开出后2.5小时与客车相遇.货车每小时行多少千米?
2、甲、乙两辆汽车同时同向而行,甲汽车每小时行42千米,乙汽车每小时行45千米,2.4小时后两车相距多少千米?
3、甲、乙两船同时从一个码头向相反方向开出,甲船每小时行23.5千米,乙船每小时行21.5千米,航行几个小时后,两船相距315千米?
4、甲、乙两列火车同时从相距453千米的两地相对开出,甲车每小时行45千米.5小时后两车还相距28千米,乙车每小时行多少千米?
5、一辆汽车从甲地开往乙地,每小时行56千米,3小时后距离中点还有6千米,这时这辆汽车距乙地还有多少千米?
6、两列火车同时从甲乙两地相向开出,第一列火车从甲站出发,每小时行50千米,第二列火车从乙站出发,每小时行60千米,两车相遇时,第一列火车正好行了全程的 ,离乙站还有300千米.甲乙两地相距多少千米?
7、甲乙两个同学在400米一圈的运动场跑道上,同时同地反向跑步,甲每秒钟5米,乙每秒钟6米,大约多少秒钟后两人相遇?
8、赵兰步行上学,每分钟行75米,赵兰离家6分钟后,妈妈发现赵兰没戴红领巾,就骑车去追,每分钟行375米,妈妈出发多少分钟后能追上赵兰?
9、甲乙两车同时从两地相向而行,甲每小时行83千米,乙每小时行95千米,两车在距中点24千米处相遇,求两地距离?
10、甲、乙两列火车分别从两个车站相向开出,甲车每小时行48千米,乙车每小时行52千米,如果相遇时,甲车比乙车一共少行20千米,那么两站之间的距离是多少千米
1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?
2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?
3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?
4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?
5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?
6. 在 1998的约数(或因数)中有两位7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?
数,其中最大的是哪个数?
15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?
17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?
18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?
19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?
20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?
21.若a为自然数,证明10│(a2005-a1949).
22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.
23.求被3除余2,被5除余3,被7除余5的最小三位数.
24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.
25.试证不小于5的质数的平方与1的差必能被24整除.
26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?
27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?
28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?
29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%.求第三次加入同样多的水后盐水的浓度.
30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?
1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?
(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
(3)有一快棱长20厘米的正方体木料,刨成一个底面直径最大的圆柱体,刨去木料的体积是多少?
(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开始装配,每天装配40台,完成这批任务时,甲组做了多少天?
(6)修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好.如果两队合修2天后,其余由乙队独修,还要几天完成?
(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
(10)前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长.
(11)甲数是甲乙丙三数的平均数的1.2倍.如果乙丙两数和是99,求甲数是多少?
(12)有一工程计划用工人800名,限100天完成.不料从开工起,做35天后因事故停工,停工25天后继续开工,如果要在限期内完工,应增加工人多少名?
(13)水果店以2元钱1.5千克的价格买进苹果若干千克,又以4元钱2.5千克的价格卖出去.如果店里想得到100元钱的利润,这个水果店必须卖出水果多少千克?
(14)甲乙丙三人行走的速度分别为每分钟30米、40米和50米.甲乙同在A地,丙在B地.甲乙与丙同时相向而行,丙遇见乙后10分钟又和甲相遇,求AB两地相距多少米?
(15)甲从东村去西村需10分钟,乙从西村去东村需行15分钟,两人同时动身相向而行,相遇时离中点150米,求两村间的距离.
(16)一辆汽车,第一天跑完全程的2/5,第二天跑完剩下的1/2,第三天跑的路程比第一天少1/3,这时剩下的路程是50千米.求全程是多少千米?
(17)客船从甲港开往乙港,每小时行24千米.货船从乙港开往甲港,12小时行完全程.现同时相对开出,相遇时,客船和货船所行路程之比为6:7,甲乙两港间的距离.
(18)甲乙两站相距1134千米,一客车和一货车同时从两站相向开出,10小时30分钟相遇,货车速度是客车速度的5/7,客车每小时行多少千米?
(19)某装配车间男职工人数的40%和女职工人数的20%相等,已知这个车间有女职工130名,男职工人数比女职工人数少多少名?
(20)有盐水25千克,含盐20%,加了一些水后含盐8%,加了多少水?
(21)甲乙丙三个仓库存粮共307吨,各运出40吨后,甲乙仓库剩下粮食重量的比是3:5,乙丙仓库剩下粮食重量的比是3:4,丙库原有粮食多少吨?
(22)甲乙两车间要加工一批面粉,实际完成计划的130%甲乙两车间完成任务的比为8:5,乙车间比甲车间少加工面粉13.5吨.原计划加工的面粉是多少吨?
【应用题二】
(1)有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?
(2)计划装120台电视机,如果每天装8台能提前一天完成任务,如果提前4天完成,每天应装配多少台?
(3)甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
(4)学校买来图书若干本分给各班,若每班分25本则多22本,若每班分给30本则少68本,共有几个班级?买来图书多少本?
(5)果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
(6)绿化队修整街心花园,用去900元,比原计划节省了300元,节省了百分之几?
(7)某修路队修一条公路,原计划每天修200米,实际每天多修50米,结果提前3天完成任务,这条公路全长多少米?
(8)有一长方体钢锭,底面周长2米,长与宽的比是4:1,高比宽少25%它正好可以铸成高为3分米的圆锥体,圆锥体的底面积是多少?
(9)一根电线,第一次用去全长的37.5%,第二次用去27米,这时已用的电线与没用的电线长度比是3:2.这根电线原来长多少米?
(10)某班男生人数比全班人数的5/7 多6人,女生人数比全班人数的1/4少4人.全班共有多少人?
(11)甲仓原来比乙仓少存粮50吨.从甲仓往乙仓调运30吨粮食后,甲仓存粮比乙仓少1/4.乙仓现在存粮多少吨?
(12)将柴油装入一只圆柱形的油桶,已知油桶的底面直径6分米、高10分米装满后连桶重280千克.已知一升柴油重0.85千克,桶重多少千克?
(13)某商店以每支10.9元购进一批钢笔,卖出每支14元.卖出这批钢笔的4/5时,不仅收回了全部成本,而且获得利润150元.这批钢笔一共有多少支?
(14)加工一批零件,师傅每天可加工54个,徒弟如果单独加工,17天可以完成.现两人同时工作,任务完成时,师徒两人加工零件的个数比是9:8,这批零件有多少个?
(15)六(一)班原有1/5的同学参加劳动,后来又有两个同学主动参加,这样实际参加人数是其余人数的1/3,实际参加劳动的有多少人?
(16)有大小球共100个,大球的 1/3比小球的1/10多16个,大、小球各有多少个?
(17)妈妈买3千克香蕉和2千克梨共付13元,已知梨的单价是香蕉的2/3, 每千克梨多少元?
(18)师徒俩共同做一批零件,原计划师傅和徒弟2人做零件个数的比是9:7结果完成任务时,师傅做了总数的 5/8,比原计划多做了30个零件,师傅原计划做零件多少个?
(19)一盒糖果共有80粒,分给兄弟二人,哥哥吃掉自己的1/3,弟弟吃掉10粒,后来又吃掉5粒,剩下的两人正好相等,兄弟两人原来各分得多少粒?
(20)有甲乙两根绳子,甲绳比乙绳长35米,已知甲绳 1/9和乙绳的1/4相等,两根绳子各长多少米?
问题3:求一个数比另一个数多少百分之几的应用题教学设计
百度文库-输入:求一个数比另一个数多少百分之几的应用题教学设计-点击搜索-找到你喜欢的-点集下载-保存-ok
问题4:一个直角三角形的边是6厘米,8厘米,10厘米,分别绕着三条边做轴,求形成的立体图形的体积和表面积?[数学科目]
1.以8厘米为轴,以6为底:体积=1/3*3.14*6*6*8=301.44
表面积=3.14*6*6+3.14*6*((6*6+8*8)*1/3)=113.04+628=741.04
2.以6厘米为轴,以8为底:体积=1/3*3.14*8*8*6=401.92
表面积=3.14*8*8+3.14*8*((6*6+8*8)*1/3)=200.96+837.25=1038.21
3.以10为轴,圆半径为6*8\10=4.8,体积:1/3*3.14*4.8*4.8*10=241.15
表面积= 3.14*4.8*((4.8*4.8+3/7*10*3/7*10)*1/3)+3.14*4.8*((4.8*4.8+4/7*10*4/7*10)*1/3= 自己算下.
问题5:老师用的教案[政治科目]
教学目的
1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.
2.通过复习,使学生能够准确的找出题目中的等量关系及发现生活中的等量关系.
3.培养学生的分析以及综合能力.能够从不同角度解决同一个问题.
4.通过调查数据和利用数据,使学生在现实情境中体会到数学与现实生活的密切联系.
教学重点
通过复习,使学生能够准确的找出等量关系.
教学准备
调查表的各项内容,学生需提前一天认真调查,填写.
教学过程:
一、创设情境:我也是洋里中心校毕业的,我很愿意与同学们交朋友,交朋友应相互了解,比如,我知道班长林端13岁,体育委员江莹莹14岁,你们猜猜,陈老师今年有多少岁?
二、沟通整理,复习.
1、理一理,复习列方程解应用题的一般步骤及关键.
(1)让我用应用题的方式告诉你们:班长林端13岁,体育委员江莹莹14岁,他们岁数之和是陈老师的1/3,陈老师今年多少岁?(板书)
(2)你能用方程方法解答这一题吗?(反馈)今天,我们将通过了解陈老师,一起交朋友的办法来复习列方程解应用题.(板书课题:总复习:列方程解应用题)
(3)过渡:结合解的过程,回忆一下,列方程解应用题有哪几个步骤,并写在笔记中.
(4)反馈:谁来说说?(师简单板书各步.)哪一步是列方程解应用题的关键?(划出第二步)
(5)过渡:列方程解应用题的关键是找数量间相等关系,等量关系找到了,问题就迎刃而解了,陈老师有多个找等量关系的绝招,这些绝招就隐藏在陈老师的“自我介绍”中.
2、了解找等量关系的途径,优选方程方法.
(1)找等量关系,并写出来.
“自我介绍”
副班长体重35千克,比陈老师体重的多5千克,陈老师体重多少千克?
陈老师爱好种花,去年种了一批,大旱后死了三分之一,过冬时又死了6棵,最后还剩10棵,求去年种了多少棵?
陈老师家门口有一长方形的鱼塘,周长24米,长7米,那宽多少米?
陈老师节约用钱,去年还存了5000元,存期一年,利率2,今年取款时银行应多付我多少元?
(2)生逐题回答等量关系,师生共同小结:找等量关系可以根据什么去找?(根据关键句或重点词句找等量关系;按照事理以及根据事情发展感变化的情况找等量关系;利用常见的数量关系和计算公式找等量关系.)
板书:1,关键字词.“比”“是”“多”“少”
2,事情发展.
3,计算公式.
4,常见的数量关系.
(3)学生利用调查表举例说等量关系.
(4)利用等量关系解答各题.(提醒学生注意第四题的要求)---想想用方程解容易还是算术解容易,拣容易的方法做.
(5)生独立回答各题.
(6)比较等量关系中的未知数位置,自主发现最后一题的未知数单独在等号的另一端,所以用算术解容易,而其余各题的未知数与已知数混在一起,用方程解较容易.
(7)第一题你还可以列出什么方程?等量关系是什么?
(8)你认为哪种方程最容易想?(小结:对了,一道题可以列出多种方程,我们要选择最容易想的方程.)
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
