java中的Hashtable的用法:
Java包含两个类,java.util.Hashtable 和java.util.HashMap,它们提供了一个多种用途的hashtable机制。Hashtable和HashMap对象可以让你把一个key和一个value结合起来,并用put() 方法把这对key/value输入到表中。然后你可以通过调用get()方法,把key作为参数来得到这个value(值)。只要满足两个基本的要求,key和value可以是任何对象。注意,因为key和value必须是对象,所以原始类型(primitive types)必须通过运用诸如Integer(int)的方法转换成对象。下面是一段简单的示例代码:
1. 先创建一个hashtable,保存了1, 2, 3三个对象。
Hashtable numbers = new Hashtable();
numbers.put("one", new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));2. 查找
Integer n = (Integer)numbers.get("two");
if (n != null) {
System.out.println("two = " + n);
}为了将一个特定类的对象用做一个key,这个类必须提供两个方法,equals() 和 hashCode()。这两个方法在java.lang.Object中,所以所有的类都可以继承这两个方法;但是,这两个方法在Object类中的实现一般没什么用,所以你通常需要自己重载这两个方法。
Equals()方法把它的对象同另一个对象进行比较,如果这两个对象代表相同的信息,则返回true。该方法也查看并确保这两个对象属于相同的类。如果两个参照对象是完全一样的对象,Object.equals()返回true,这就说明了为什么这个方法通常不是很适合的原因。在大多数情况下,你需要一个方法来一个字段一个字段地进行比较,所以我们认为代表相同数据的不同对象是相等的。
HashCode()方法通过运用对象的内容执行一个哈希函数来生成一个int值。Hashtable和HashMap用这个值来算出一对key/value位于哪个bucket(哈希元)(或列表)中。
如果你想创建一个hashtable,这个hashtable运用你自己定义的一个类的对象作为key,那么你应该确信这个类的equals()和hashCode()方法提供有用的值。首先查看你扩展的类,确定它的实现是否满足你的需求。如果没有,你应该重载方法。
任何equals()方法的基本设计约束是,如果传递给它的对象属于同一个类,而且它的数据字段设定为表示同样数据的值,那么它就应该返回true。你也应该确信,如果传递一个空的参数给该方法,那么你的代码返回false:public boolean equals(Object o)
{
if ( (o == null)
|| !(o instanceof myClass))
{
return false;
}
}另外,在设计一个hashCode()方法时,应该记住一些规则。首先,该方法必须为一个特定的对象返回相同的值,而不管这个方法被调用了多少次(当然,只要对象的内容在调用之间没有改变,在将一个对象用做一个hashtable的key时,应该避免这一点)。第二,如果由你的equals()方法定义的两个对象是相等的,那么它们也必须生成相同的哈希码。第三,这更像是一个方针,而不是一个原则,你应该设法设计方法,使它为不同的对象内容生成不同的结果。如果偶尔不同的对象正好生成了相同的哈希码,这也不要紧。但是,如果该方法只能返回范围在1到10的值,那么只能用10个列表,而不管在hashtable中有多少个列表。
Hashtable和HashMap
Hashtable和HashMap类有三个重要的不同之处。第一个不同主要是历史原因。Hashtable是基于陈旧的Dictionary类的,HashMap是Java 1.2引进的Map接口的一个实现。
也许最重要的不同是Hashtable的方法是同步的,而HashMap的方法不是。这就意味着,虽然你可以不用采取任何特殊的行为就可以在一个多线程的应用程序中用一个Hashtable,但你必须同样地为一个HashMap提供外同步。一个方便的方法就是利用Collections类的静态的synchronizedMap()方法,它创建一个线程安全的Map对象,并把它作为一个封装的对象来返回。这个对象的方法可以让你同步访问潜在的HashMap。这么做的结果就是当你不需要同步时,你不能切断Hashtable中的同步(比如在一个单线程的应用程序中),而且同步增加了很多处理费用。
第三点不同是,只有HashMap可以让你将空值作为一个表的条目的key或value。HashMap中只有一条记录可以是一个空的key,但任意数量的条目可以是空的value。这就是说,如果在表中没有发现搜索键,或者如果发现了搜索键,但它是一个空的值,那么get()将返回null。如果有必要,用containKey()方法来区别这两种情况。
一些资料建议,当需要同步时,用Hashtable,反之用HashMap。但是,因为在需要时,HashMap可以被同步,HashMap的功能比Hashtable的功能更多,而且它不是基于一个陈旧的类的,所以有人认为,在各种情况下,HashMap都优先于Hashtable。
Hashtable性能
影响hashtable功效的主要因素就是表中列表的平均长度,因为平均搜索时间与这个平均长度直接相关。很显然,要减小平均长度,你必须增加hashtable中列表的数量;如果列表数量非常大,以至于大多数列表或所有列表只包含一条记录,你就会获得最佳的搜索效率。然而,这样做可能太过分了。如果你的hashtable的列表数远远多于数据条目,那你就没有必要做这样的内存花费了,而在一些情况下,人们也不可能接受这样的做法。
在我们前面的例子中,我们预先知道我们有多少条记录1,000。知道这点后,我们就可以决定我们的hashtable应该包含多少个列表,以便达成搜索速度和内存使用效率之间最好的折中方式。然而,在许多情况下,你预先不知道你要处理多少条记录;数据被读取的文件可能会不断扩大,或者记录的数量可能一天一天地发生很大的变化。
随着条目的增加,Hashtable和HashMap类通过动态地扩展表来处理这个问题。这两个类都有接受表中列表最初数量的构造器,和一个作为参数的负载系数(load factor):
public Hashtable( int initialCapacity, float loadFactor) public HashMap( int initialCapacity, float loadFactor)
将这两个数相乘计算出一个临界值。每次给哈希表添加一个新的条目时,计数就被更新,当计数超过临界值时,表被重新设置(rehash)。(列表数量增加到以前数量的两倍加1,所有的条目转移到正确的列表中。)缺省的构造器设定最初的容量为11,负载系数是0.75,所以临界值是8。当第九条记录被添加到表中时,就重新调整哈希表,使其有23个列表,新的临界值将是17(23*0.75的整数部分)。你可以看到,负载系数是哈希表中平均列表数量的上限,这就意味着,在缺省情况下,哈希表很少会有许多包含不只一条记录的列表。比较我们最初的例子,在那个例子中,我们有1,000条记录,分布在10个列表中。如果我们用缺省值,这个表将会扩展到含有1,500多个列表。但你可以控制这点。如果用负载系数相乘的列表数量大于你处理的条目数,那么表永远不会重制,所以我们可以仿效下面的例子:
// Table will not rehash until it // has 1,100 entries (10*110): Hashtable myHashTable = new Hashtable(10, 110.0F);
你可能不想这么做,除非你没有为空的列表节省内存,而且不介意额外的搜索时间,这可能在嵌入系统中会出现这种情况。然而,这种方法可能很有用,因为重新设置很占用计算时间,而这种方法可以保证永远不会发生重新设置这种情况。
注意,虽然调用put()可以使表增大(列表数量增加),调用remove()不会有相反的结果。所以,如果你有一个大的表,而且从中删除了大部分条目,结果你会有一个大的但是大部分是空的表。
Hashtable和HashMap
Hashtable和HashMap类有三个重要的不同之处。第一个不同主要是历史原因。Hashtable是基于陈旧的Dictionary类的,HashMap是Java 1.2引进的Map接口的一个实现。
也许最重要的不同是Hashtable的方法是同步的,而HashMap的方法不是。这就意味着,虽然你可以不用采取任何特殊的行为就可以在一个多线程的应用程序中用一个Hashtable,但你必须同样地为一个HashMap提供外同步。一个方便的方法就是利用Collections类的静态的synchronizedMap()方法,它创建一个线程安全的Map对象,并把它作为一个封装的对象来返回。这个对象的方法可以让你同步访问潜在的HashMap。这么做的结果就是当你不需要同步时,你不能切断Hashtable中的同步(比如在一个单线程的应用程序中),而且同步增加了很多处理费用。
第三点不同是,只有HashMap可以让你将空值作为一个表的条目的key或value。HashMap中只有一条记录可以是一个空的key,但任意数量的条目可以是空的value。这就是说,如果在表中没有发现搜索键,或者如果发现了搜索键,但它是一个空的值,那么get()将返回null。如果有必要,用containKey()方法来区别这两种情况。
一些资料建议,当需要同步时,用Hashtable,反之用HashMap。但是,因为在需要时,HashMap可以被同步,HashMap的功能比Hashtable的功能更多,而且它不是基于一个陈旧的类的,所以有人认为,在各种情况下,HashMap都优先于Hashtable。
关于Properties
有时侯,你可能想用一个hashtable来映射key的字符串到value的字符串。DOS、Windows和Unix中的环境字符串就有一些例子,如key的字符串PATH被映射到value的字符串C:WINDOWS;C:WINDOWSSYSTEM。Hashtables是表示这些的一个简单的方法,但Java提供了另外一种方法。
Java.util.Properties类是Hashtable的一个子类,设计用于String keys和values。Properties对象的用法同Hashtable的用法相象,但是类增加了两个节省时间的方法,你应该知道。
Store()方法把一个Properties对象的内容以一种可读的形式保存到一个文件中。Load()方法正好相反,用来读取文件,并设定Properties对象来包含keys和values。
注意,因为Properties扩展了Hashtable,你可以用超类的put()方法来添加不是String对象的keys和values。这是不可取的。另外,如果你将store()用于一个不包含String对象的Properties对象,store()将失败。作为put()和get()的替代,你应该用setProperty()和getProperty(),它们用String参数。
import java.util.*;
class HashMapTest
{
public static void printElements(Collection c,HashMap hm)
{
Iterator it=c.iterator();
while(it.hasNext())
{
Object key1=it.next();
System.out.println(key1+" = "+hm.get(key1));
}
}
public static void main(String[] args)
{
HashMap hm=new HashMap();
Student s1=new Student(1,"zhang3");
Student s2=new Student(2,"li4");
Student s3=new Student(3,"wang5");
Student s4=new Student(1,"zhang3");
hm.put(s1,"123");
hm.put(s2,"456");
hm.put(s3,"789");
hm.put(s4,"321");
Set keys=hm.keySet();
System.out.println("Key:");
printElements(keys,hm);
}
}
class Student
{
int num;
String name;
Student(int num,String name)
{
this.num=num;
this.name=name;
}
public int hashCode()
{
return num*name.hashCode();
}
public boolean equals(Object o)
{
Student s=(Student)o;
return num==s.num && name.equals(s.name);
}
public String toString()
{
return num+":"+name;
}
}我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable。
第3部分 Hashtable源码解析(基于JDK1.6.0_45)
第1部分 Hashtable介绍
Hashtable 简介
和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。
Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。
Hashtable 的函数都是同步的,这意味着它是线程安全的。它的key、value都不可以为null。此外,Hashtable中的映射不是有序的。
Hashtable 的实例有两个参数影响其性能:初始容量 和 加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)。
Hashtable的构造函数
// 默认构造函数。
public Hashtable()
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity)
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor)
// 包含“子Map”的构造函数
public Hashtable(Map t)
Hashtable的API
synchronized void clear() synchronized Object clone() boolean contains(Object value) synchronized boolean containsKey(Object key) synchronized boolean containsValue(Object value) synchronized Enumeration elements() synchronized Set> entrySet() synchronized boolean equals(Object object) synchronized V get(Object key) synchronized int hashCode() synchronized boolean isEmpty() synchronized Set keySet() synchronized Enumeration keys() synchronized V put(K key, V value) synchronized void putAll(Map map) synchronized V remove(Object key) synchronized int size() synchronized String toString() synchronized Collection values()
第2部分 Hashtable数据结构
Hashtable的继承关系
java.lang.Object
↳ java.util.Dictionary
↳ java.util.Hashtable
public class Hashtable extends Dictionary
implements Map, Cloneable, java.io.Serializable { }
Hashtable与Map关系如下图:

从图中可以看出:
(01) Hashtable继承于Dictionary类,实现了Map接口。Map是"key-value键值对"接口,Dictionary是声明了操作"键值对"函数接口的抽象类。
(02) Hashtable是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table, count, threshold, loadFactor, modCount。
table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的。
count是Hashtable的大小,它是Hashtable保存的键值对的数量。
threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。
loadFactor就是加载因子。
modCount是用来实现fail-fast机制的
第3部分 Hashtable源码解析(基于JDK1.6.0_45)
为了更了解Hashtable的原理,下面对Hashtable源码代码作出分析。
在阅读源码时,建议参考后面的说明来建立对Hashtable的整体认识,这样更容易理解Hashtable。
package java.util;
import java.io.*;
public class Hashtable
extends Dictionary
implements Map, Cloneable, java.io.Serializable {
// Hashtable保存key-value的数组。
// Hashtable是采用拉链法实现的,每一个Entry本质上是一个单向链表
private transient Entry[] table;
// Hashtable中元素的实际数量
private transient int count;
// 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
private int threshold;
// 加载因子
private float loadFactor;
// Hashtable被改变的次数
private transient int modCount = 0;
// 序列版本号
private static final long serialVersionUID = 1421746759512286392L;
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
}
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
// 默认构造函数。
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
}
// 包含“子Map”的构造函数
public Hashtable(Map t) {
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
}
public synchronized int size() {
return count;
}
public synchronized boolean isEmpty() {
return count == 0;
}
// 返回“所有key”的枚举对象
public synchronized Enumeration keys() {
return this.getEnumeration(KEYS);
}
// 返回“所有value”的枚举对象
public synchronized Enumeration elements() {
return this.getEnumeration(VALUES);
}
// 判断Hashtable是否包含“值(value)”
public synchronized boolean contains(Object value) {
// Hashtable中“键值对”的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
}
// 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}
public boolean containsValue(Object value) {
return contains(value);
}
// 判断Hashtable是否包含key
public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
// % tab.length 的目的是防止数据越界
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}
// 返回key对应的value,没有的话返回null
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return e.value;
}
}
return null;
}
// 调整Hashtable的长度,将长度变成原来的(2倍+1)
// (01) 将“旧的Entry数组”赋值给一个临时变量。
// (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”
// (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中
protected void rehash() {
int oldCapacity = table.length;
Entry[] oldMap = table;
int newCapacity = oldCapacity * 2 + 1;
Entry[] newMap = new Entry[newCapacity];
modCount++;
threshold = (int)(newCapacity * loadFactor);
table = newMap;
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry old = oldMap[i] ; old != null ; ) {
Entry e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = newMap[index];
newMap[index] = e;
}
}
}
// 将“key-value”添加到Hashtable中
public synchronized V put(K key, V value) {
// Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new NullPointerException();
}
// 若“Hashtable中已存在键为key的键值对”,
// 则用“新的value”替换“旧的value”
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.value;
e.value = value;
return old;
}
}
// 若“Hashtable中不存在键为key的键值对”,
// (01) 将“修改统计数”+1
modCount++;
// (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
// 则调整Hashtable的大小
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
index = (hash & 0x7FFFFFFF) % tab.length;
}
// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
Entry e = tab[index];
// (04)
创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。
tab[index] = new Entry(hash, key, value, e);
// (05) 将“Hashtable的实际容量”+1
count++;
return null;
}
// 删除Hashtable中键为key的元素
public synchronized V remove(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”
// 然后在链表中找出要删除的节点,并删除该节点。
for (Entry e = tab[index], prev = null ; e != null ; prev = e, e = e.next)
{
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}
// 将“Map(t)”的中全部元素逐一添加到Hashtable中
public synchronized void putAll(Map t) {
for (Map.Entry e : t.entrySet())
put(e.getKey(), e.getValue());
}
// 清空Hashtable
// 将Hashtable的table数组的值全部设为null
public synchronized void clear() {
Entry tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
}
// 克隆一个Hashtable,并以Object的形式返回。
public synchronized Object clone() {
try {
Hashtable t = (Hashtable) super.clone();
t.table = new Entry[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return "{}";
StringBuilder sb = new StringBuilder();
Iterator> it = entrySet().iterator();
sb.append('{');
for (int i = 0; ; i++) {
Map.Entry e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key.toString());
sb.append('=');
sb.append(value == this ? "(this Map)" : value.toString());
if (i == max)
return sb.append('}').toString();
sb.append(", ");
}
}
// 获取Hashtable的枚举类对象
// 若Hashtable的实际大小为0,则返回“空枚举类”对象;
// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
private Enumeration getEnumeration(int type) {
if (count == 0) {
return (Enumeration)emptyEnumerator;
} else {
return new Enumerator(type, false);
}
}
// 获取Hashtable的迭代器
// 若Hashtable的实际大小为0,则返回“空迭代器”对象;
// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
private Iterator getIterator(int type) {
if (count == 0) {
return (Iterator) emptyIterator;
} else {
return new Enumerator(type, true);
}
}
// Hashtable的“key的集合”。它是一个Set,意味着没有重复元素
private transient volatile Set keySet = null;
// Hashtable的“key-value的集合”。它是一个Set,意味着没有重复元素
private transient volatile Set> entrySet = null;
// Hashtable的“key-value的集合”。它是一个Collection,意味着可以有重复元素
private transient volatile Collection values = null;
// 返回一个被synchronizedSet封装后的KeySet对象
// synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步
public Set keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
}
// Hashtable的Key的Set集合。
// KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。
private class KeySet extends AbstractSet {
public Iterator iterator() {
return getIterator(KEYS);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
}
public void clear() {
Hashtable.this.clear();
}
}
// 返回一个被synchronizedSet封装后的EntrySet对象
// synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步
public Set> entrySet() {
if (entrySet==null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
}
// Hashtable的Entry的Set集合。
// EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。
private class EntrySet extends AbstractSet> {
public Iterator> iterator() {
return getIterator(ENTRIES);
}
public boolean add(Map.Entry o) {
return super.add(o);
}
// 查找EntrySet中是否包含Object(0)
// 首先,在table中找到o对应的Entry(Entry是一个单向链表)
// 然后,查找Entry链表中是否存在Object
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry)o;
Object key = entry.getKey();
Entry[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index]; e != null; e = e.next)
if (e.hash==hash && e.equals(entry))
return true;
return false;
}
// 删除元素Object(0)
// 首先,在table中找到o对应的Entry(Entry是一个单向链表)
// 然后,删除链表中的元素Object
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry entry = (Map.Entry) o;
K key = entry.getKey();
Entry[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e.hash==hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next;
count--;
e.value = null;
return true;
}
}
return false;
}
public int size() {
return count;
}
public void clear() {
Hashtable.this.clear();
}
}
// 返回一个被synchronizedCollection封装后的ValueCollection对象
//
synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
public Collection values() {
if (values==null)
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
}
// Hashtable的value的Collection集合。
// ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。
private class ValueCollection extends AbstractCollection {
public Iterator iterator() {
return getIterator(VALUES);
}
public int size() {
return count;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
Hashtable.this.clear();
}
}
// 重新equals()函数
// 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
public synchronized boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof Map))
return false;
Map t = (Map) o;
if (t.size() != size())
return false;
try {
// 通过迭代器依次取出当前Hashtable的key-value键值对
// 并判断该键值对,存在于Hashtable(o)中。
// 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。
Iterator> i = entrySet().iterator();
while (i.hasNext()) {
Map.Entry e = i.next();
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key)==null && t.containsKey(key)))
return false;
} else {
if (!value.equals(t.get(key)))
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
}
return true;
}
// 计算Hashtable的哈希值
// 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。
// 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。
public synchronized int hashCode() {
int h = 0;
if (count == 0 || loadFactor < 0)
return h; // Returns zero
loadFactor = -loadFactor; // Mark hashCode computation in progress
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
for (Entry e = tab[i]; e != null; e = e.next)
h += e.key.hashCode() ^ e.value.hashCode();
loadFactor = -loadFactor; // Mark hashCode computation complete
return h;
}
// java.io.Serializable的写入函数
// 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
// Write out the length, threshold, loadfactor
s.defaultWriteObject();
// Write out length, count of elements and then the key/value objects
s.writeInt(table.length);
s.writeInt(count);
for (int index = table.length-1; index >= 0; index--) {
Entry entry = table[index];
while (entry != null) {
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.next;
}
}
}
// java.io.Serializable的读取函数:根据写入方式读出
// 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the length, threshold, and loadfactor
s.defaultReadObject();
// Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt();
// Compute new size with a bit of room 5% to grow but
// no larger than the original size. Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)(elements * loadFactor) + (elements / 20) + 3;
if (length > elements && (length & 1) == 0)
length--;
if (origlength > 0 && length > origlength)
length = origlength;
Entry[] table = new Entry[length];
count = 0;
// Read the number of elements and then all the key/value objects
for (; elements > 0; elements--) {
K key = (K)s.readObject();
V value = (V)s.readObject();
// synch could be eliminated for performance
reconstitutionPut(table, key, value);
}
this.table = table;
}
private void reconstitutionPut(Entry[] tab, K key, V value)
throws StreamCorruptedException
{
if (value == null) {
throw new java.io.StreamCorruptedException();
}
// Makes sure the key is not already in the hashtable.
// This should not happen in deserialized version.
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
throw new java.io.StreamCorruptedException();
}
}
// Creates the new entry.
Entry e = tab[index];
tab[index] = new Entry(hash, key, value, e);
count++;
}
// Hashtable的Entry节点,它本质上是一个单向链表。
// 也因此,我们才能推断出Hashtable是由拉链法实现的散列表
private static class Entry implements Map.Entry {
// 哈希值
int hash;
K key;
V value;
// 指向的下一个Entry,即链表的下一个节点
Entry next;
// 构造函数
protected Entry(int hash, K key, V value, Entry next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
protected Object clone() {
return new Entry(hash, key, value,
(next==null ? null : (Entry) next.clone()));
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
// 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.value;
this.value = value;
return oldValue;
}
// 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey()))
&&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
}
public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
}
public String toString() {
return key.toString()+"="+value.toString();
}
}
private static final int KEYS = 0;
private static final int VALUES = 1;
private static final int ENTRIES = 2;
// Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和
“通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。
private class Enumerator implements Enumeration, Iterator {
// 指向Hashtable的table
Entry[] table = Hashtable.this.table;
// Hashtable的总的大小
int index = table.length;
Entry entry = null;
Entry lastReturned = null;
int type;
// Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
// iterator为true,表示它是迭代器;否则,是枚举类。
boolean iterator;
// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
protected int expectedModCount = modCount;
Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
}
// 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
public boolean hasMoreElements() {
Entry e = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
}
// 获取下一个元素
// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
// 然后,依次向后遍历单向链表Entry。
public T nextElement() {
Entry et = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
}
// 迭代器Iterator的判断是否存在下一个元素
// 实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return hasMoreElements();
}
// 迭代器获取下一个元素
// 实际上,它是调用的nextElement()
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
}
// 迭代器的remove()接口。
// 首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}
private static Enumeration emptyEnumerator = new EmptyEnumerator();
private static Iterator emptyIterator = new EmptyIterator();
// 空枚举类
// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
private static class EmptyEnumerator implements Enumeration
private static class Entry implements Map.Entry {
// 哈希值
int hash;
K key;
V value;
// 指向的下一个Entry,即链表的下一个节点
Entry next;
// 构造函数
protected Entry(int hash, K key, V value, Entry next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
protected Object clone() {
return new Entry(hash, key, value,
(next==null ? null : (Entry) next.clone()));
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
// 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.value;
this.value = value;
return oldValue;
}
// 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey()))
&&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
}
public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
}
public String toString() {
return key.toString()+"="+value.toString();
}
}说明: 在详细介绍Hashtable的代码之前,我们需要了解:和Hashmap一样,Hashtable也是一个散列表,它也是通过“拉链法”解决哈希冲突的。
第3.1部分 Hashtable的“拉链法”相关内容
3.1.1 Hashtable数据存储数组
private transient Entry[] table;
Hashtable中的key-value都是存储在table数组中的。
3.1.2 数据节点Entry的数据结构
private static class Entry implements Map.Entry {
// 哈希值
int hash;
K key;
V value;
// 指向的下一个Entry,即链表的下一个节点
Entry next;
// 构造函数
protected Entry(int hash, K key, V value, Entry next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
protected Object clone() {
return new Entry(hash, key, value,
(next==null ? null : (Entry) next.clone()));
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
// 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.value;
this.value = value;
return oldValue;
}
// 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey()))
&&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
}
public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
}
public String toString() {
return key.toString()+"="+value.toString();
}
}从中,我们可以看出 Entry 实际上就是一个单向链表。这也是为什么我们说Hashtable是通过拉链法解决哈希冲突的。
Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是基本的读取/修改key、value值的函数。
第3.2部分 Hashtable的构造函数
Hashtable共包括4个构造函数
// 默认构造函数。
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
}
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
}
// 包含“子Map”的构造函数
public Hashtable(Map t) {
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
}第3.3部分 Hashtable的主要对外接口
3.3.1 clear()
clear() 的作用是清空Hashtable。它是将Hashtable的table数组的值全部设为null
public synchronized void clear() {
Entry tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
}3.3.2 contains() 和 containsValue()
contains() 和 containsValue() 的作用都是判断Hashtable是否包含“值(value)”
public boolean containsValue(Object value) {
return contains(value);
}
public synchronized boolean contains(Object value) {
// Hashtable中“键值对”的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
}
// 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}3.3.3 containsKey()
containsKey() 的作用是判断Hashtable是否包含key
public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
// % tab.length 的目的是防止数据越界
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}3.3.4 elements()
elements() 的作用是返回“所有value”的枚举对象
public synchronized Enumeration elements() {
return this.getEnumeration(VALUES);
}
// 获取Hashtable的枚举类对象
private Enumeration getEnumeration(int type) {
if (count == 0) {
return (Enumeration)emptyEnumerator;
} else {
return new Enumerator(type, false);
}
}从中,我们可以看出:
(01) 若Hashtable的实际大小为0,则返回“空枚举类”对象emptyEnumerator;
(02) 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
我们先看看emptyEnumerator对象是如何实现的
private static Enumeration emptyEnumerator = new EmptyEnumerator();
// 空枚举类
// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
private static class EmptyEnumerator implements Enumeration<Object> {
EmptyEnumerator() { }
// 空枚举类的hasMoreElements() 始终返回false
public boolean hasMoreElements() {
return false;
}
// 空枚举类的nextElement() 抛出异常
public Object nextElement()
{
throw new NoSuchElementException("Hashtable Enumerator");
}
}我们在来看看Enumeration类
Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。
private class Enumerator<T> implements
Enumeration<T>, Iterator<T> {
// 指向Hashtable的table
Entry[] table = Hashtable.this.table;
// Hashtable的总的大小
int index
= table.length;
Entry<K,V> entry = null;
Entry<K,V>
lastReturned = null;
int type;
// Enumerator是 “迭代器(Iterator)” 还是
“枚举类(Enumeration)”的标志
// iterator为true,表示它是迭代器;否则,是枚举类。
boolean
iterator;
//
在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
protected int expectedModCount =
modCount;
Enumerator(int type, boolean iterator)
{
this.type = type;
this.iterator = iterator;
}
//
从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
public boolean hasMoreElements()
{
Entry<K,V> e = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration
*/
while (e == null && i > 0) {
e =
t[--i];
}
entry = e;
index = i;
return e != null;
}
// 获取下一个元素
// 注意:从hasMoreElements()
和nextElement() 可以看出“Hashtable的elements()遍历方式”
//
首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
//
然后,依次向后遍历单向链表Entry。
public T nextElement() {
Entry<K,V>
et = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (et == null
&& i > 0) {
et = t[--i];
}
entry
= et;
index = i;
if (et != null) {
Entry<K,V> e = lastReturned = entry;
entry =
e.next;
return type == KEYS ? (T)e.key : (type == VALUES ?
(T)e.value : (T)e);
}
throw new
NoSuchElementException("Hashtable Enumerator");
}
// 迭代器Iterator的判断是否存在下一个元素
//
实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return
hasMoreElements();
}
// 迭代器获取下一个元素
//
实际上,它是调用的nextElement()
public T next() {
if (modCount !=
expectedModCount)
throw new
ConcurrentModificationException();
return nextElement();
}
// 迭代器的remove()接口。
//
首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void
remove() {
if (!iterator)
throw new
UnsupportedOperationException();
if (lastReturned ==
null)
throw new IllegalStateException("Hashtable
Enumerator");
if (modCount != expectedModCount)
throw
new ConcurrentModificationException();
synchronized(Hashtable.this)
{
Entry[] tab = Hashtable.this.table;
int index =
(lastReturned.hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e =
tab[index], prev = null; e != null;
prev = e, e = e.next)
{
if (e == lastReturned) {
modCount++;
expectedModCount++;
if
(prev == null)
tab[index] =
e.next;
else
prev.next =
e.next;
count--;
lastReturned =
null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}
entrySet(), keySet(), keys(), values()的实现方法和elements()差不多,而且源码中已经明确的给出了注释。这里就不再做过多说明了。
3.3.5 get()
get() 的作用就是获取key对应的value,没有的话返回null
public synchronized V get(Object key) {
Entry tab[] =
table;
int hash = key.hashCode();
// 计算索引值,
int index =
(hash & 0x7FFFFFFF) % tab.length;
//
找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e
= tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash)
&& e.key.equals(key)) {
return e.value;
}
}
return null;
}
3.3.6 put()
put() 的作用是对外提供接口,让Hashtable对象可以通过put()将“key-value”添加到Hashtable中。
public synchronized V put(K key, V value) {
//
Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new
NullPointerException();
}
// 若“Hashtable中已存在键为key的键值对”,
//
则用“新的value”替换“旧的value”
Entry tab[] = table;
int hash =
key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if
((e.hash == hash) && e.key.equals(key)) {
V old =
e.value;
e.value = value;
return
old;
}
}
// 若“Hashtable中不存在键为key的键值对”,
// (01) 将“修改统计数”+1
modCount++;
// (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
//
则调整Hashtable的大小
if (count >= threshold) {
// Rehash the
table if the threshold is exceeded
rehash();
tab = table;
index = (hash & 0x7FFFFFFF) %
tab.length;
}
// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
Entry<K,V> e = tab[index];
// (04)
创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。
tab[index] = new Entry<K,V>(hash, key, value, e);
// (05)
将“Hashtable的实际容量”+1
count++;
return null;
}
3.3.7 putAll()
putAll() 的作用是将“Map(t)”的中全部元素逐一添加到Hashtable中
public synchronized void putAll(Map<? extends K, ? extends V>
t) {
for (Map.Entry<?
extends K, ? extends V>
e : t.entrySet())
put(e.getKey(), e.getValue());
}
3.3.8 remove()
remove() 的作用就是删除Hashtable中键为key的元素
public synchronized V remove(Object key) {
Entry tab[] =
table;
int hash = key.hashCode();
int index = (hash &
0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”
//
然后在链表中找出要删除的节点,并删除该节点。
for (Entry<K,V> e = tab[index], prev = null
; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) &&
e.key.equals(key)) {
modCount++;
if (prev != null)
{
prev.next = e.next;
} else
{
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value =
null;
return oldValue;
}
}
return
null;
}
第3.4部分 Hashtable实现的Cloneable接口
Hashtable实现了Cloneable接口,即实现了clone()方法。
clone()方法的作用很简单,就是克隆一个Hashtable对象并返回。
//
克隆一个Hashtable,并以Object的形式返回。
public synchronized Object clone() {
try
{
Hashtable<K,V> t = (Hashtable<K,V>)
super.clone();
t.table = new Entry[table.length];
for (int
i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] !=
null)
? (Entry<K,V>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values
= null;
t.modCount = 0;
return t;
} catch
(CloneNotSupportedException e) {
// this shouldn't happen, since we
are Cloneable
throw new InternalError();
}
}
第3.5部分 Hashtable实现的Serializable接口
Hashtable实现java.io.Serializable,分别实现了串行读取、写入功能。
串行写入函数就是将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
串行读取函数:根据写入方式读出将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private synchronized void
writeObject(java.io.ObjectOutputStream s)
throws IOException
{
// Write out the length, threshold, loadfactor
s.defaultWriteObject();
// Write out length, count of
elements and then the key/value objects
s.writeInt(table.length);
s.writeInt(count);
for (int index = table.length-1; index >= 0;
index--) {
Entry entry = table[index];
while (entry != null)
{
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.next;
}
}
}
private void
readObject(java.io.ObjectInputStream s)
throws IOException,
ClassNotFoundException
{
// Read in the length, threshold, and
loadfactor
s.defaultReadObject();
// Read the original length of the
array and number of elements
int origlength = s.readInt();
int
elements = s.readInt();
// Compute new size with a bit of
room 5% to grow but
// no larger than the original size. Make the
length
// odd if it's large enough, this helps distribute the
entries.
// Guard against the length ending up zero, that's not
valid.
int length = (int)(elements * loadFactor) + (elements / 20) +
3;
if (length > elements && (length & 1) == 0)
length--;
if (origlength > 0 && length >
origlength)
length = origlength;
Entry[] table = new
Entry[length];
count = 0;
// Read the number of elements and
then all the key/value objects
for (; elements > 0; elements--)
{
K key = (K)s.readObject();
V value =
(V)s.readObject();
// synch could be eliminated for
performance
reconstitutionPut(table, key, value);
}
this.table = table;
}
第4部分 Hashtable遍历方式
4.1 遍历Hashtable的键值对
第一步:根据entrySet()获取Hashtable的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
//
table中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter =
table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry =
(Map.Entry)iter.next();
// 获取key
key =
(String)entry.getKey();
// 获取value
integ =
(Integer)entry.getValue();
}
4.2 通过Iterator遍历Hashtable的键
第一步:根据keySet()获取Hashtable的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
//
假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
String key =
null;
Integer integ = null;
Iterator iter =
table.keySet().iterator();
while (iter.hasNext()) {
//
获取key
key = (String)iter.next();
// 根据key,获取value
integ
= (Integer)table.get(key);
}
4.3 通过Iterator遍历Hashtable的值
第一步:根据value()获取Hashtable的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
//
假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer value =
null;
Collection c = table.values();
Iterator iter= c.iterator();
while
(iter.hasNext()) {
value =
(Integer)iter.next();
}
4.4 通过Enumeration遍历Hashtable的键
第一步:根据keys()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
4.5 通过Enumeration遍历Hashtable的值
第一步:根据elements()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu
= table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
遍历测试程序如下:
import java.util.*;
/*
* @desc
遍历Hashtable的测试程序。
* (01) 通过entrySet()去遍历key、value,参考实现函数:
*
iteratorHashtableByEntryset()
* (02) 通过keySet()去遍历key,参考实现函数:
*
iteratorHashtableByKeyset()
* (03) 通过values()去遍历value,参考实现函数:
*
iteratorHashtableJustValues()
* (04)
通过Enumeration去遍历key,参考实现函数:
* enumHashtableKey()
* (05)
通过Enumeration去遍历value,参考实现函数:
* enumHashtableValue()
*
*
@author skywang
*/
public class HashtableIteratorTest {
public
static void main(String[] args) {
int val = 0;
String key
= null;
Integer value = null;
Random r = new
Random();
Hashtable table = new Hashtable();
for
(int i=0; i<12; i++) {
// 随机获取一个[0,100)之间的数字
val = r.nextInt(100);
key =
String.valueOf(val);
value = r.nextInt(5);
//
添加到Hashtable中
table.put(key, value);
System.out.println(" key:"+key+" value:"+value);
}
//
通过entrySet()遍历Hashtable的key-value
iteratorHashtableByEntryset(table)
;
// 通过keySet()遍历Hashtable的key-value
iteratorHashtableByKeyset(table) ;
//
单单遍历Hashtable的value
iteratorHashtableJustValues(table);
//
遍历Hashtable的Enumeration的key
enumHashtableKey(table);
//
遍历Hashtable的Enumeration的value
//enumHashtableValue(table);
}
/*
* 通过Enumeration遍历Hashtable的key
*
效率高!
*/
private static void enumHashtableKey(Hashtable table)
{
if (table == null)
return ;
System.out.println("\nenumeration Hashtable");
Enumeration enu =
table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
}
/*
* 通过Enumeration遍历Hashtable的value
* 效率高!
*/
private static void enumHashtableValue(Hashtable table) {
if (table
== null)
return ;
System.out.println("\nenumeration Hashtable");
Enumeration enu =
table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
}
/*
* 通过entry set遍历Hashtable
* 效率高!
*/
private static void
iteratorHashtableByEntryset(Hashtable table) {
if (table ==
null)
return ;
System.out.println("\niterator Hashtable By entryset");
String key =
null;
Integer integ = null;
Iterator iter =
table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
key =
(String)entry.getKey();
integ =
(Integer)entry.getValue();
System.out.println(key+" --
"+integ.intValue());
}
}
/*
* 通过keyset来遍历Hashtable
* 效率低!
*/
private static void
iteratorHashtableByKeyset(Hashtable table) {
if (table ==
null)
return ;
System.out.println("\niterator Hashtable By keyset");
String key =
null;
Integer integ = null;
Iterator iter =
table.keySet().iterator();
while (iter.hasNext()) {
key = (String)iter.next();
integ =
(Integer)table.get(key);
System.out.println(key+" --
"+integ.intValue());
}
}
/*
* 遍历Hashtable的values
*/
private static void
iteratorHashtableJustValues(Hashtable table) {
if (table ==
null)
return ;
Collection c =
table.values();
Iterator iter= c.iterator();
while
(iter.hasNext()) {
System.out.println(iter.next());
}
}
}
第5部分 Hashtable示例
下面通过一个实例来学习如何使用Hashtable。
import java.util.*;
/*
* @desc Hashtable的测试程序。
*
*
@author skywang
*/
public class HashtableTest {
public static void
main(String[] args) {
testHashtableAPIs();
}
private static void testHashtableAPIs()
{
// 初始化随机种子
Random r = new Random();
//
新建Hashtable
Hashtable table = new Hashtable();
//
添加操作
table.put("one", r.nextInt(10));
table.put("two",
r.nextInt(10));
table.put("three", r.nextInt(10));
// 打印出table
System.out.println("table:"+table );
// 通过Iterator遍历key-value
Iterator iter = table.entrySet().iterator();
while(iter.hasNext())
{
Map.Entry entry = (Map.Entry)iter.next();
System.out.println("next : "+ entry.getKey() +" -
"+entry.getValue());
}
// Hashtable的键值对个数
System.out.println("size:"+table.size());
// containsKey(Object key)
:是否包含键key
System.out.println("contains key two :
"+table.containsKey("two"));
System.out.println("contains key five :
"+table.containsKey("five"));
// containsValue(Object value)
:是否包含值value
System.out.println("contains value 0 :
"+table.containsValue(new Integer(0)));
// remove(Object key) :
删除键key对应的键值对
table.remove("three");
System.out.println("table:"+table );
// clear() : 清空Hashtable
table.clear();
// isEmpty() : Hashtable是否为空
System.out.println((table.isEmpty()?"table is empty":"table is not empty")
);
}
}
table:{two=5, one=0, three=6}
next : two -
5
next : one - 0
next : three - 6
size:3
contains key two :
true
contains key five : false
contains value 0 : true
table:{two=5,
one=0}
table is empty
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
