同学们提问关于“x的倒带人生_已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x[数学]”的问题,52IJ师说平台通过网络上精心整理了以下关于“x的倒带人生_已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x[数学]”的一些有用参考答案。请注意:文中所谈及的内容不代表本站的真正观点,也请不要相信各种联系方式。下面是本网所整理的“x的倒带人生_已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x[数学]”的相关信息:
已知函数f(x)=x2+1,且g(x)=f
科目:f(x),G(x)=g(x)-λf(x 关键词:x的倒带人生g(x)=f[f(x)]=f(x2+1)=(x2+1)2+1=x4+2x2+2.
G(x)=g(x)-λf(x)=x4+2x2+2-λx2-λ=x4+(2-λ)x2+(2-λ),G(x1)-G(x2)=[x14+(2-λ)x12+(2-λ)]-[x24+(2-λ)x22+(2-λ)]=(x1+x2)(x1-x2)[x12+x22+(2-λ)]
由题设当x1<x2<-1时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)>1+1+2-λ=4-λ,
则4-λ≥0,λ≤4当-1<x1<x2<0时,(x1+x2)(x1-x2)>0,x12+x22+(2-λ)<1+1+2-λ=4-λ,
则4-λ≤0,λ≥4故λ=4.
其他回答
因为f(x)=x2+1,所以g(x)=x4+3,
G(x)=x4+3-入(2x+1)
=x(4-2入)+3-
入。假设存在实数入,G(x)是一次函数,是单调的,所以不存在。。。
讲的太烂了哈...
其他类似问题
问题1:希望尽快解答设函数F(x)在定义域为R上满足F(2-X)=F(2+X),F(7-X)=f(7+x),且在闭区间〔0,7〕上,只有F(1)=F(3)=01.试判断函数y=F(X)的奇偶性.2.试求方程F(X)=0在闭区间〔-2005,2005〕上根的个数,并[数学科目]
函数f(x)在闭区间[0,7]上,只有f(1)=f(3)=0,∴f(5)≠0
又f(2-x)=f(2+x),∴f(-1)=f(5),∴f(-1) ≠0,而∴f(1)=0
∴f(-1) ≠±f(1),函数f(x)既不是奇函数也不是偶函数
由f(2-x)=f(2+x)得f(4-x)=f(x)
由f(7-x)=f(7+x)得f(4-x)=f(10+x),∴f(x)=f(10+x)
10是函数f(x)的一个周期
而f(7-x)=f(7+x),函数f(x)在[4,7]上无根,∴函数f(x)在[7,10]上无根
∴f(x)=0在[0,10]上恰有两根为1和3,f(x)=0的根为10n+1或10n+3的形式
解-2005≤10n+1≤2005得-200≤n≤200,共201个
解-2005≤10n+3≤2005得-200≤n≤200,共201个
∴方程f(x)=0在在闭区间[-2005,2005]上的根的个数为802
问题2:高一函数题.希望能快些.1.若关于x的方程25^-│x+1│-4*5^ -│x+1│-m有实根,求m的取值范围2.设集合A={x│2(㏒1/2 x)^2 - 14㏒4 x+3≤0},若函数f(x)=(㏒a x/a)(㏒a x/a^2),其中a>0,a≠0,当x∈A时,其值域B={y│-1/4[数学科目]
1.若关于x的方程25^-│x+1│-4*5^ -│x+1│-m=0实根,求m的取值范围
25^(-│x+1│)-4*5^( -│x+1│)-m=0
5^(-2│x+1│)-4*5^( -│x+1│)-m=0
(5^(-│x+1│)-2)^2-4-m=0
∵0
问题3:1.9^log3(2)-2^[1+1/2log2(5)]2.已知集合A={a,ab,log2(ab)}和集合B={|a|,0,b}相等,求实数a,b的值3.函数y=x^2(-3[数学科目]
1.9^log3(2)-2^[1+1/2log2(5)]
=3^log3(4)-2*2^log2(根号5)
=4-2*根号5
利用:a^[loga(b)]=b
2已知集合A={a,ab,log2(ab)}和集合B={|a|,0,b}相等
说明:log2(ab)=0
(不可能是a或者ab=0,否则,log2(ab)没有意义了)
这样,ab=1
所以,只能是ab=|a|,解出,a=-1,b=-1
(假如是ab=b,那么,a=1,这样集合A中就有两个1了!)
3.解出,x=+_根号y
所以,y=+_根号x
由于原函数的定义域为:-3=1
这样,反函数的定义域为:9>x>=1
所以,反函数应该为:y=-根号x (9>x>=1)(至于反函数取负号这是因为反函数的值域就是原函数的定义域,由于原函数的定义域为:-3
问题4:(x-2)(x-3)/(x+5)(x-7)>0(x-2)(x-3)(x+2)(x+3)>0[数学科目]
这个题用的穿针引线法.第一个不等式若改为等式为(x-2)(x-3)(x+5)(x-7)=0,则有解x=2,x=3,x=-5,x=7.列一条数轴,在上面标出这些点,左边小,右边大.从右边上方开始画曲线,依次穿过各点,像缝衣服一样,最后处在数轴上方的为x
问题5:希望有讲解,
对称轴x=-a/2
1).
-a/2≤-1时,即a≥2时,
f(1)取最大值,f(1)=a+4=-3
a=-7
2).
-1≤-a/2≤1时,即-2≤a≤2时,
f(-a/2)取最大值,f(-a/2)=-3
a=2√6
3).1≤-a/2时,即a≤-2时,f(-1)取最大值,f(-1)=4-a=-3 a=7其实函数很简单,就是要抓住题的条件,刚刚接触,慢慢来,不过一些老师强调的基础,特别是定义域,以后做难题时容易搞忘,总之,不要怕它,多变一变,我是一个数学科代表,
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
