欢迎您访问52IJ教育培训网,今天小编为你分享的师说方面的学习知识是通过网络精心收集整理的:“三个女人一个宝_有一座藏宝洞里面有一个宝藏,洞中有三个人他们都知道...”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
最少要问两次.
三人分别为甲乙丙.如果按顺序问三个人,回答真话用T表示,回答假话用F表示,则:
甲 T F F
乙 T T F
丙 F F T
由此可见 当甲回答假话F,而乙回答真话T的情况下,(他们的回答不同),只问两次就知道答案,乙回答的是真话.
当甲和乙回答一致,丙回答的不一致的情况下,不能判断出答案,他们可能都说真话,也可能都说假话,但我们无法判断出真假.
其实可以忽略丙了,因为他的回答和乙一直是相反的.
如果不是按顺序问三个人,根据题目的条件,无法判断出先问乙(或丙),乙(或丙)说的是真是假.
其他回答
我们认为只有一个人回答的对 。(因为问的顺序不知道)先问两个人,如果他们说的一致,则是假的,如果不一致,还要问第三个人,然后从三个人的答案中,取与其他两个不同的答案。
其他类似问题
问题1:船边挂者软梯,离海面2米,海水半小时涨半米,几小时海水能淹没软梯.[数学科目]
永远不可能
水涨船高
问题2:逻辑思维题.可能有关数学在古罗马时期,奴隶主贵族们把遍体鳞伤的角斗士奴隶连同斯巴达克排成一个大圆圈,场上连同斯巴达克一共1000人,他们从头开始报数,不断按圆圈报从1到10,每报到10的[历史科目]
因为是未成一圈,杀了为数0的人,每列是9人了,一直推下去就是那为勇士了
问题3:怎样提高数学逻辑思维
多看,多想,多练,没什么捷径,另外不知道你说的是什么阶段的数学,中学和大学的数学思维自然有所不同,第一步:建立起一个知识框架,第二步,在这个基础上加强练习;第三步:回归书本,融会贯通.这个是我自己的学习经验,我自己数学还算可以,中学数学基本在140以上,考研数学在四年没学的情况下,110多分
问题4:有趣的逻辑思维题 海盗的题我做过...第一次就对了[数学科目]
数学三大难题
在20世纪八十年代初,我们这代“知青”为了多学点知识,纷纷进“五大”学习,然后又进“成人自考”深造.我在“西南财经大学”攻读经济专业时,一次高等数学的面授课上,一位德高望重的导师给我们讲到:人类文明的进步,与数学的发展成正比;人类数学的发展,中国亦有卓越的贡献,古有祖冲之,今有华罗庚.21世纪,还有在坐的各位及全国各地的有志之青年.
导师接着讲到:古代数学史上有世界三大难题(倍立方体、方圆、三分角).近代数学史又有第五公设、费马大定理、任一大偶数表两素之和.这些都已为前人攻破的攻破,将突破的将突破.现代发达国家的数学家们又在钻研什么呢?21世纪数学精英们又攻什么呢?
这位导师继续讲了现代数学上的三大难题:一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?
二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者.
三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形).近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量.(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等.)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门.
归纳为20棵树植树问题,四色绘地图问题,单色三角形问题.通称现代数学三大难题.
当年的大学生一学期中能亲聆导师教诲不到十次.数学三大难题是我们学子在课堂上最难忘最精彩的一课.光阴荏苒,时光如白驹过隙,弹指之间,今已是21世纪第一个年代了(以区别下一年代—— 一十年代),在此将我在大学学习中最精彩最难忘的一课奉献,以飨不同层次、不同爱好的读者.
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会.由于感到局促不安,你想知道这一大厅中是否有你已经认识的人.你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝.不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的.然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人.生成问题的一个解通常比验证一个给定的解时间花费要多得多.这是这种一般现象的一个例子.与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的.不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一.它是斯蒂文·考克(StephenCook)于1971年陈述的.
“千僖难题”之二: 霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法.基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成.这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展.不幸的是,在这一推广中,程序的几何出发点变得模糊起来.在某种意义下,必须加上某些没有任何几何解释的部件.霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合.
“千僖难题”之三: 庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点.另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的.我们说,苹果表面是“单连通的”,而轮胎面不是.大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题.这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗.
“千僖难题”之四: 黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等.这样的数称为素数;它们在纯数学及其应用中都起着重要作用.在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态.著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上.这点已经对于开始的1,500,000,000个解验证过.证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明.
“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的.大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系.基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波.尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解.特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实.在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念.
“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行.数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言.虽然这些方程是19世纪写下的,我们对它们的理解仍然极少.挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘.
“千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷.欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难.事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解.当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态.特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点.
问题5:怎样训练数学逻辑思维?[语文科目]
1.训练学生的数学思维要给材料 .
要根据学生的思维特点、数学本身的性质向学生提供丰富的感性材料,以形成具体生动的表象和概念.随着年级的升高,具体形象的成分逐渐减少,抽象成分不断增加.概念、法则、性质、公式等理性材料日益积累,构成思维的素材,成为构建相应的数学认识模式的知识基础.如学生形成数的概念,构建四则运算系列的模式,掌握几何形体知识的结构大都需要丰富的材料.总的是遵循具体形象──形象抽象—逻辑抽象的规律,并带有某种创造性的萌芽.例如立方体概念的教学中,教师可以提供学生动手操作的素材,让学生动手实践,掌握概念.为使学生认识立方体有12条棱这一概念,教师可分别将11根、13根以及刚好是12根的小棒分别发给学生,要学生动手搭建立方体.学生通过实验发现:搭建一个立方体刚好需要12根小棒,从而让学生掌握立方体是有12条棱组成的这一概念.再如要让学生掌握立方体的12条棱都相等这一概念,教师可在分发12根小棒的小组中有意放一些12根小棒不相等的,让学生在“失败”的经验中认识立方体的12条棱必须相等.这样,学生根据教师提供的教学素材,经历着从的、物质的、外部的活动,逐步压缩、省略思维活动的具体环节直至内化为最简单的形式──立方体的概念.
2.训练学生的数学思维要有方向 .
小学生学习数学的思维方向明显特点是单向直进,即顺着一个方向前进,对周围的其他因素“视而不见”.而皮亚杰认为思维水平的区分标志是“守恒”和“可逆性”.这里在所谓“守恒”就是当一个运算发生变化时,仍有某些因素保持不变,这不变的恒量称为守恒.而“可逆性”是指一种运算能用逆运算作补偿.学生要能进行“运算”,这个运算应当是具有可逆性的内化了的动作.因此,教师在教学中既要注重定向集中思维,又要注重多向发散思维.前者是利用已有的信息积累和记忆模式,集中向一个目标进行分析推理,全力找到唯一的合理的答案.后者是重组眼前或记忆系统中的信息,产生新的信息.解答者可以从不同角度,朝不同方向进行思索,探求多种答案.在对培养学生创造能力越来越强烈的今天,我们必须十分注重学生数学思维的方向性,要利用一切教材中的有利因素,训练学生一题多解、一题多变、一题多用的思维方法.
3.训练学生的数学思维应有系统 .
散乱无序的思维是不能正确反映客观世界的整体性的.“所谓智力的发展不是别的,只是很好组织起来的知识体系”,要使数学知识在考虑数学知识本身的逻辑系统和学生认知规律的相互作用下,能上下、左右、前后各个方向整合成一个纵向不断分化,横向综合贯通,联系密切的知识网络,使数、形、式各部分知识纵横联系,相互促进,广中求深.实践证明,知识联系越紧密,智力背景就愈广阔,迁移能力也就越强,创造性思维就越有可能.一个多方向、多层次的整体结构,对知识的理解、掌握、储存、检索和应用愈有利.但由于小学身心发展的自身规律决定了教师在教学中不可能将知识一下子整体传授给学生,而是在教学时具有一定的等级层次性、阶段性,不同的层次、不同的阶段反映不同的思维水平和不同的思维品质.如小学数学中整数计算的四次循环,分数、小数的两次循环.而三角形知识的两次教学等.教师在教学时应从整体的、系统的观点出发,明确每一层次、每一阶段对学生思维训练的要求,恰到好处地进行训练.
4.训练学生的数学思维应有规律 .
数学思维中的规律包括形式逻辑规律和辩证逻辑规律以及数学本身的特殊规律.它们之间又是相互联系的.存在着形式和内容、具体与抽象、特殊与一般的关系.要使学生学习富有成效,必须揭示知识的内在的联系与规律.如整数、小数、分数、百分数概念之间的联系;四则计算中的五大运算定律,是数系运算根据的通性公式;和、差、倍、分四种基本数量关系是各种应用题的基础等等.规律揭示得愈基本、愈概括,则学生的理解愈容易,愈方便,教学的效果也越好.因此,教师在新知识教学时,要充分利用迁移的功能,让学生用已有的知识和思维方法,去解决新的问题.如我们在教了“5乘以几”的乘法口诀后,可以让学生用这种思考方法去推导其他乘法口诀;学了“加法交换律”的推导后,可以同样的方法学习乘法交换律;学了“三角形的面积公式”推导后,可以同样的方法学习梯形的面积公式推导等等.
总之,只有当数学思维的材料是丰富的、广泛的、可变的;方向是明确的、清晰的、相对稳定的;内容是系统有序的、开放的、综合的;结构是有规律的、辩证的.层次的,才能发展学生思维的整体性,并使思维具有灵活性、深刻性、批判性、目的性、敏捷性甚至创造性,才有利于培养创造型人才.
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
