欢迎您访问52IJ教育培训网,今天小编为你分享的数学方面的学习知识是通过网络精心收集整理的:“eq4_那位高手用MATLAB帮我解个六元四次方程组eq1='((l-k)...[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
你的问题可以化为下面向量的问题
已知a=(1,1,1),b=(-1,1,1),c=a×u,d=c×u,
c和d的夹角是50°,c和v的夹角是55°,d和v的夹角是4.9°,
u⊥v,|u|=1,|v|=1
求u,v
题中的a,b,c,d,u,v均为三维向量,×表示向量内积,|u|表示向量u的模
其中,向量b对应你以前的(m,n,p),向量u对应你以前的(h,k,l),向量v对应你以前的(u,v,w)
由上题,c=a×u,d=c×u可得c⊥u,d⊥u又u⊥v,且c,d,v有相同的起点即坐标原点,从而c,d,v在同一平面上且有相同的起点,且均与u垂直
所以c,d,v之间的夹角必定满足某个等式,回到题上也就是说,55°=50°+5°,
进一步说,你给的条件是矛盾的,所以matlab找不到解
就算你给出的条件是对的,由于你给出的前三个方程并非完全独立的,也不足以确定你想要的结果
其他回答
clc
clear all
m=-1;
n=1;
p=1;
a=cos(50*pi/180);
b=cos(55*pi/180);
c=cos(4.9*pi/180);
eq1=sym('((l-k)*(n*l-p*k)+(h-l)*(p*h-m*l)+(k-h)*(m*k-n*h))/(sqrt((l-k)^2+(h-l)^2+(k...
其他类似问题
问题1:matlab中解方程组syms x y z t[x,y,z,t]=solve(2*x+3*y-z+t-2,5*x+y+z-t-13,x-y+2*z+2*t-3,3*x+2*y+2*z+9*t+3)结果:x =-2y =1z =2t =4结果是不对的.做了如下调整:syms x y z t[t,x,y,z]=solve(2*x+3*y-z+t-2,5*x+y+z-t-13,x-y+2*z+2*t-3,3*x+2*y+2[数学科目]
是这么回事.solve函数求解方程组时,函数输出结果,也就是方程组的未知数是有一定顺序的.你的例子一共有4个未知数,solve求解出来后[x1,x2,x4,x4]存放的分别是t,x,y,z.如果你这么调用[t,x,y,z]=solve(2*x+3*y-z+t-2,5*x+y+z-t-13,x-y+2*z+2*t-3,3*x+2*y+2*z+9*t+3)
,t存放t,x存放x,y存放y,z存放z,当然和实际结果一样.
可是如果这样[x,y,z,t]=solve(2*x+3*y-z+t-2,5*x+y+z-t-13,x-y+2*z+2*t-3,3*x+2*y+2*z+9*t+3),那么x存放的实际就是t了,y存放x等等
楼主说对了,的确是按照英文字母的顺序.以下是MATLAB中的帮助信息:
For a system of equations and an equal number of outputs,the results are sorted alphabetically and assigned to the outputs.
"alphabetically"就是按字母顺序的意思
问题2:matlab如何解方程组syms A B P[A,B,P]=solve(12.56*(A-311)=-20.9*(B-311),B/311=P^0.71,933*P=A*20+B)结果是错[A,B,P]=solve(12.56*(A-311)=-20.9*(B-311),B/311=P^0.71,933*P=A*20+B)Error:The expression to the left of the equals sign is not a valid t[英语科目]
加单引号
>> [A,B,P]= solve('12.56*(A-311)=-20.9*(B-311)','B/311=P^0.71','933*P=A*20+B')
A =
58.505380691632510208368024800025
B =
462.73839323029165893698074681874
P =
1.7501029014608165735309123717248
问题3:matlab 解方程组怎么用matlab解二元一次方程组?最简单的就行.例如 y=2x+3y=3x-7怎么用matlab来实现呢?
一.用matlab 中的solve函数
>>syms x y; %定义两个符号变量;
>>[x ,y]=solve('y=2*x+3','y=3*x-7');%定义一个 2x1 的数组,存放x,y
>>x
>>x=10.0000
>>y
>>y=23.0000
二.用matlab 中的反向斜线运算符(backward slash)
分析:
方程组可化为
2*x-y=-3;
3*x-y=7;
AX=B (*)
A=[2,-1;3,-1]; B=[-3,7];
X=A\B %可以看成将(*)式左边都除以系数矩阵A
>>A=[2,-1;3,-1];
>>B=[-3,7];
>>X=A\b
X =
10.0000 % x = 10.0000
23.0000 % y = 23.0000
问题4:关于用matlab解方程组函数是这样的f(t)=(a/b)*cos(dt)-kt已知t=1时f(1),t=2时f(2),t=3时f(3),根据上面的已知条件 求a b d的值,值用已知条件表示 给出编程语言和结果不好意思 我写错了 应该是函数f(t)=(a/b
S=solve('a/b*cos(b)-k=f1','a/b*cos(2*b)-k*2=f2','a/b*cos(3*b)-k*3=f3','a,b,k');
a= -acos(-1/12/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/12*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(3*f1-f3)/(2*f1-f2)+1/2*i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)))*(2*f1-f2)/(-1+1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/3*(3*f1-f3)/(2*f1-f2)-i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3))+2*(-1/12/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/12*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(3*f1-f3)/(2*f1-f2)+1/2*i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)))^2)
-acos(-1/12/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/12*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(3*f1-f3)/(2*f1-f2)-1/2*i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)))*(2*f1-f2)/(-1+1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/3*(3*f1-f3)/(2*f1-f2)+i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3))+2*(-1/12/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/12*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(3*f1-f3)/(2*f1-f2)-1/2*i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)))^2)
b=acos(-1/12/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/12*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(3*f1-f3)/(2*f1-f2)+1/2*i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)))
acos(-1/12/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/12*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)+1/6*(3*f1-f3)/(2*f1-f2)-1/2*i*3^(1/2)*(1/6/(2*f1-f2)*(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)-1/6*(45*f1^2-54*f1*f2+6*f3*f1-6*f3*f2+18*f2^2+f3^2)/(2*f1-f2)/(-135*f1^3+81*f1^2*f2+81*f3*f1^2-54*f1*f3*f2-9*f1*f3^2+9*f2*f3^2-f3^3+6*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f1-3*(-2025*f1^4+6480*f1^3*f2-1620*f1^3*f3+2592*f1^2*f3*f2-54*f1^2*f3^2-6804*f1^2*f2^2+3240*f1*f2^3-84*f3^3*f1-1944*f1*f2^2*f3+432*f1*f2*f3^2-324*f3^2*f2^2+648*f3*f2^3-648*f2^4+96*f3^3*f2-9*f3^4)^(1/2)*f2)^(1/3)))
k就不发了,要不然超过10000字了,
问题5:matlab解方程组方程组1:(m/2-n*sin(c/2)+e*cos(f))^2+(h+n*cos(c/2)-e*sin(f))^2-(m/2-n*sin(c/2+d)+e*cos(f-b))^2-(h+n*cos(c/2+d)-e*sin(f-b))^2=0;方程组2:(m/2-n*sin(c/2)+e*cos(f))^2+(h+n*cos(c/2)-e*sin(f))^2-(m/2+e*cos(a+f)-n*sin(c/2-d))^2-(h[数学科目]
function F=mymagic(x,b,c,e,f,h,m,n)
F=[(m/2-n*sin(c/2)+e*cos(f))^2+(h+n*cos(c/2)-e*sin(f))^2-(m/2-n*sin(c/2+x(2))+e*cos(f-b))^2-(h+n*cos(c/2+x(2))-e*sin(f-b))^2
(m/2-n*sin(c/2)+e*cos(f))^2+(h+n*cos(c/2)-e*sin(f))^2-(m/2+e*cos(x(1)+f)-n*sin(c/2-x(2)))^2-(h+n*cos(c/2-x(2))-e*sin(x(1)+f))^2];
fsolve(@(x) mymagic(x,1,2,3,4,5,6,7),[0;0])
上面是函数,下面是调用的语句,其中最后的[0;0]是迭代的初值,这里使用了fsolve进行数值求解,求解的方法就是牛顿迭代法!
祝你学习愉快!
- k高点_1.一正弦曲线的一个最高点为(14,3),从相
- 律政俏佳人 豆瓣_哪里有律政俏佳人的英文影评?[
- 导数练习题_偏导数公式及习题[数学]
- 脸蛋n开0.33_已知a,b,c大于0,且a COS^2+bsin^2
- tom360电影_Tom ran around a ring track,which
- the best damn thing_英文thebestdamnthing的含义
- inputbox_vb Do Loop条件循环:通过InputBox录入
- 前方交会法_前方交会法计算步骤 详细的 谢谢