欢迎您访问52IJ教育培训网,今天小编为你分享的数学方面的学习知识是通过网络精心收集整理的:“6750_...最好有公式,设某厂商的需求函数为Q=6750-50P,总成...[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
需求函数中,Q表示需求量,P表示价格.TC表示总成本.TR表示总收益.总收益当然是由价格乘以需求量相乘得出的.
(1)由需求函数Q=6750-50P求反函数,得出P=135-0.02Q.
TR=PQ=(135-0.02Q)Q=135Q-0.02Q².这步是求总收益的,就是用价格乘以需求量.
那么MR,即边际收益,就是由TR求导得出,原因:就是应该这么求的.如果不懂要看看宏观经济学上面的曲线.是一条切线.
MR=(TR)′=135-0.04Q.
总成本函数,TC=12000+0.025Q²,求出边际成本MC,也是求导得出.MC=(TC)′=0.05Q
因为要求利润最大化,就是MR=MC.看书上MR=MC两条线相交.求利润最大化就是MR=MC.如果是在不懂,背下来这个结论就可以了.
把两个得出的合并解一元一次方程,就可以啦.得出需求量Q=1500.代入P=135-0.02Q得P=105
(2)利润,就是总收益减去总成本啦.
最大利润=总收益-总收益=TR-TC.
刚才已经算出,TR=135Q-0.02Q²,TC=12000+0.025Q².
所以TR-TC=135Q-0.02Q2 – 12000-0.025Q2
刚才已经算出Q=1500.把Q=1500代入,就得出
135*1500-0.02*15002-0.025*15002
=202500-45000-12000-56250
=89250
最大利润为89250
其他类似问题
问题1:数学应用题公式要全面 行程 销售.[数学科目]
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b:宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
问题2:求六年级下学期计算题、应用题和小学所学的所有定义、公式、运算法则求六年级下学期计算题和小学所学的所有定义、公式、运算法则计算题含160道加、减、乘、除的脱式计算;40道方程[数学科目]
自然数
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数.
整数
自然数都是整数,整数不都是自然数.
小数
小数是特殊形式的分数.但是不能说小数就是分数.
混小数(带小数)
小数的整数部分不为零的小数叫混小数,也叫带小数.
纯小数
小数的整数部分为零的小数,叫做纯小数.
循环小数
小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数.例如:0.333……,1.2470470470……都是循环小数.
纯循环小数
循环节从十分位就开始的循环小数,叫做纯循环小数.
混循环小数
与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数.
有限小数
小数的小数部分位数是有限个数字的小数(不全为零)叫做有限小数.
无限小数
小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数.循环小数都是无限小数,无限小数不一定都是循环小数.例如,圆周率π也是无限小数.
分数
表示把一个“单位1”平均分成若干份,表示其中的一份或几份的数,叫做分数.
真分数
分子比分母小的分数叫真分数.
假分数
分子比分母大,或者分子等于分母的分数叫做假分数.
带分数
一个整数(零除外)和一个真分数组合在一起的数,叫做带分数.带分数也是假分数的另一种表示形式,相互之间可以互化.
数与数字的区别
数字(也就是数码):是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字.其他还有中国小写数字,大写数字,罗马数字等等.
数是由数字和数位组成.
0的意义
0既可以表示“没有”,也可以作为某些数量的界限.如温度等.0是一个完全有确定意义的数.
0是一个数.
0是一个偶数.
0是任何自然数(0除外)的倍数.
0有占位的作用.
0不能作除数.
0是中性数.
十进制
十进制计数法是世界各国常用的一种记数方法.特点是相邻两个单位之间的进率都是十.10个较低的单位等于1个相邻的较高单位.常说“满十进一”,这种以“十”为基数的进位制,叫做十进制.
加法
把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”.
减法
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法.减法是加法的逆运算.其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”.
乘法
求n个相同加数的和的简便运算,叫做乘法.其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”.
除法
已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法.除法是乘法的逆运算.其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”.
加、减法的运算定律
加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律.
加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变.这叫做加法结合律.
在减法中,被减数、减数同时加上或者减去一个数,差不变.
在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少.反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少.
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变.
乘、除法运算定律
乘法的交换律:两个数相乘,交换两个因数的位置,积不变.这叫做乘法的交换律.
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变.这叫做乘法结合律.
乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减).这叫做乘法分配律.
乘法的其他运算定律
一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变.
除法的运算定律---商不变性质
两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变.
乘法的意义
一道乘法算式一般有下面几个意义:
一、求几个相同加数的和是多少?例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少?
二、求一个数的若干倍是多少?例如:27×0.3的意义:求27的十分之三是多少?
除法的意义
一道除法算式,一般有下面几个意义:
1、一个数里有几个除数.简称“包含除法”. 例如,24÷3表示24里面包含有几个3.
2、一个数是另一个数的多少倍.例如:24÷3,表示24是3的多少倍?
3、把一个数平均分成若干份,每份是多少?简称“等分除法”.
例如:24÷3,表示把24平均分成3份,每份是多少?
4、已知一个数的几分之几是多少,求这个数.
例如:24÷3,表示:已知一个数的三分之一是24,求这个数.
1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和 和-一个加数=另一个加数
7 被减数-减数=差 被减数-差=减数 差+减数=被减数
8 因数×因数=积 积÷一个因数=另一个因数
9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 长方形 C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高
面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径
周长=直径×∏=2×∏×半径 C=∏d=2∏r
面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高 表面积=侧面积+底面积×2
体积=底面积×高 体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
http://hi.baidu.com/ququpingping/blog
还有经典习题.
问题3:求小学数学应用题计算公式 急求小学数学应用题计算公式 像是什么追击问题 盈亏问题等的公式一种问题有很多的公式,请全面回答,[数学科目]
一、鸡兔同笼问题:
基本题型:笼子里有鸡兔共30只,一共100条腿,问:鸡兔各几只?
解这个题的方法是:先假设30只都是鸡,那么共有2x30=60条腿,少100-60=40条腿,因为每只兔子比鸡多4-2=2条腿,所以兔子共有40/2=20只,则鸡共有30-20=10只.
当然也可以倒过来,先假设30只都是兔子,那么就120条腿,多了20条,因为鸡比兔子少2条腿,所以鸡是10只.
类似的题还有很多,但都是从基本题型变化出来的,如下题:
俱乐部里有30副棋,正好供100位小朋友下,象棋是每2人下一副,跳棋是每6人下一副,问象棋和跳棋各有几副?
二、工程问题:
基本题型:
甲乙两人完成某项工程,甲单独做需要3天完成,乙单独做需要6天完成,问甲乙共同完成需要几天?
解题方法:
甲每天的工作量是全部工程的1/3,乙每天的工作量是全部工程的1/6,两人合作每天的工作量=1/3+1/6=1/2,所以甲乙共同完成需要2天.
这个题会有很多变化,如甲先工作多少天,乙再开始工作;或者甲乙共同工作一天,乙单独工作等等,但解题思路是一样的.都是把总的工作量定成1,然后计算.
三、相遇问题:
基本题型:甲乙两地相距20公里,甲的速度是6公里/小时,乙的速度是4公里/小时,甲乙两人同时同向出发,问多少时间后相遇?
解题方法:这个比较简单,20/(6+4)=2
这类的题变化是非常多的,通常有甲先出发若干时间后,乙再发的;或者求相遇地点离甲地多远的?
四、追击问题:
基本题型:甲的速度是10公里/小时,乙的速度是15公里/小时,甲先出发2小时,问乙多少时间追上甲?
解题方法:甲出发2小时,走的路程是10x2=20公里,乙的速度比甲快15-10=5公里/小时,所以追上的时间是20/5=4小时.
这个题的变化很多,比如著名的放水问题.某浴池开注水管,10分钟可注满,开排水管,20分钟可排完,问两管同时开,多少分钟可注满.这个题可以按追击问题思路来做:注水的速度是1/10,排水的速度是1/20,两者相差1/10,所以10分钟可注满.
五、水流问题:
基本题型:甲乙两地相距300公里,船速为20公里/小时,水流速度为5公里/小时,问来回需要多少时间?
解题方法:假设去的时候顺流,则速度为20+5=25公里/小时,所用时间为300/25=12小时,回来的时候逆流,则速度为20-5=15公里/小时,所用时间为300/15=20小时
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式.
过桥问题:关键是确定物体所运动的路程,参照以上公式.
仅供参考:
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数.
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数.
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数.
【平均数问题公式】
总数量÷总份数=平均数.
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间.
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和.
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程.
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和.
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速.
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目).
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时.
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间.
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5…….特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便.)
【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数.
例如,“小朋友分桃子,每人10个少9个,每人8个多7个.问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数.
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发.问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数.
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本.有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数.
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数.
(例略)
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数.
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数.
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡.
解二 (4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔.
(答 略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数.(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式.
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数.
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数.(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一 (4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
【植树问题公式】
(1)不封闭线路的植树问题:
间隔数+1=棵数;(两端植树)
路长÷间隔长+1=棵数.
或 间隔数-1=棵数;(两端不植)
路长÷间隔长-1=棵数;
路长÷间隔数=每个间隔长;
每个间隔长×间隔数=路长.
(2)封闭线路的植树问题:
路长÷间隔数=棵数;
路长÷间隔数=路长÷棵数
=每个间隔长;
每个间隔长×间隔数=每个间隔长×棵数=路长.
(3)平面植树问题:
占地总面积÷每棵占地面积=棵数
【求分率、百分率问题的公式】
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率.
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减).
【增减分(百分)率互求公式】
增长率÷(1+增长率)=减少率;
减少率÷(1-减少率)=增长率.
比甲丘面积少几分之几?”
解 这是根据增长率求减少率的应用题.按公式,可解答为
百分之几?”
解 这是由减少率求增长率的应用题,依据公式,可解答为
【求比较数应用题公式】
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差.
【求标准数应用题公式】
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
【方阵问题公式】
(1)实心方阵:(外层每边人数)2=总人数.
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数.
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数.
总人数÷4÷层数+层数=外层每边人数.
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一 先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数.从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二 直接运用公式.根据空心方阵总人数公式得
(10-3)×3×4=84(人)
【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下.
(1)单利问题:
本金×利率×时期=利息;
本金×(1+利率×时期)=本利和;
本利和÷(1+利率×时期)=本金.
年利率÷12=月利率;
月利率×12=年利率.
(2)复利问题:
本金×(1+利率)存期期数=本利和.
例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
解 (1)用月利率求.
3年=12月×3=36个月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求.
先把月利率变成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)
问题4:解各类的应用题的公式:例如什么问题什么问题之类的
没有分,白给你写啊
问题5:各种小学数学应用题公式[数学科目]
、【和差问题公式】 (和+差)÷2=较大数;
(和-差)÷2=较小数.
2、【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或和-一倍数=另一数.
3、【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或较小数+差=较大数.
4、【平均数问题公式】
总数量÷总份数=平均数.
5、【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间.
6、【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和.
7、【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程.
8、【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和.
9、【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速.
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目).
10、【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时.
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间.
11、【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数.
(摘来的,供参考)
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
