欢迎您访问52IJ教育培训网,今天小编为你分享的语文方面的学习知识是通过网络精心收集整理的:“数模转换_数模转换和解码是一个概念吗[语文]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
楼主的问题都是很大的问题哈,不是简单几句就能讲明白的,我觉得你也没必要一个个都问过去.有兴趣可以多到图书馆看看具体的书籍.我读大学时候有一门课叫数字信号处理,一个学期就在讲这些东西.你想弄明白这些首先得明白傅里叶变换是啥,这又是一个高等数学里的东西.否则,我恐怕给你说了你还是一知半解.你这个问题,首先有一点,解码不光是对于模拟和数字信号转换而言的.数字信号的加密解密,也可以称为解码.简单来说模拟信号转数字信号,模拟信号是一个连续的量,把它用一个固定的时间段平均分割,就是单位时间段存在一个模拟量.然后再用一定位数的0和1去表示这个模拟量,这样一来,每个时间段就存在一个数字量.我把这些数字量连起来,就完成了一个连续的模拟量转换为一个连续的数字量.叫编码.你说的解码应该就是与之相对应得把一个连续的一个连续的数字量还原为一个连续的模拟量——实际上就是数模转换.
其他回答
用特定方法把数码还原成它所代表的内容或将电脉冲信号转换成它所代表的信息、数据等的过程。解码在无线电技术和通讯等方面广泛应用. 这就是解码! 这些你可能不懂 换种说话现在的信息网络都是数字的,很多东西要保存传输就得编码,比如你要保存一篇文章,里面的字就是一些二进制编码。编码就是如何把信息转换成数字序列,解码则是把数字序列转换成信息。 数模转换就是将脉冲制式的数字量转换为连续变化的模拟量. 所以...
其他类似问题
问题1:数学建模的概念是什么?[政治科目]
数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程.
数学模型一般是实际事物的一种数学简化.它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别.要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等.为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型.有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代.
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的.数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿.经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术.培养学生应用数学的意识和能力已经成为数学教学的一个重要方面.
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步.建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面.数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之.为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程.为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作.通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题.数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果.接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能.培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等.
数学建模的几个过程
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息.用数学语言来描述问题.
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设.
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构.(尽量用简单的数学工具)
模型求利用获取的数据资料,对模型的所有参数做出计算(估计).
模型分析:对所得的结果进行数学上的分析.
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性.如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释.如果模型与实际吻合较差,则应该修改假设,再次重复建模过程.
模型应用:应用方式因问题的性质和建模的目的而异.
问题2:数学建模的概念[数学科目]
数学模型是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模
问题3:数学建模是什么概念[数学科目]
数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling).
问题4:数模的概念是什么?什么叫数模?[数学科目]
数学模型是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学.它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导.根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM方法.数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系.数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一.在体育实践中常常提到优秀运动员的数学模型.如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等.用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型.它是真实系统的一种抽象.数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础.数学模型的种类很多,而且有多种不同的分类方法.静态和动态模型 静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达.动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示.经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换).分布参数和集中参数模型 分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性.在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型.连续时间和离散时间模型 模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型.在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型.离散时间模型是用差分方程描述的.随机性和确定性模型 随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的.参数与非参数模型 用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型.建立参数模型就在于确定已知模型结构中的各个参数.通过理论分析总是得出参数模型.非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型.运用各种系统辨识的方法,可由非参数模型得到参数模型.如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型.线性和非线性模型 线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和.线性模型简单,应用广泛.非线性模型中各量之间的关系不是线性的,不满足叠加原理.在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型.
问题5:数模转换中,高于A1值的电压为1,低于A2值的电压为0,A1、A2值之间有一定的差距,那么在A1、A2之间的值是怎么取?
好问题:
• 亚理斯多德的二元逻辑就是我们称之为的古典逻辑.
• 二元逻辑仅能处理是与非的问题,但若答案并非0与1而是像选择题一样有多种选择时便需要多值逻辑了【仅能处理离散事件(Discrete Event)】.
• 连续事件(Continuous Event),便需要模糊逻辑了【模糊逻辑最基本的推理:若P则Q的命题】
• 古典逻辑只是模糊逻辑的一种特例
从上列定义中,瞧出解决问题的方案了吗?有听说过模糊理论(Fuzzy)吗?【它就是你提出问题的解决方案】
概略说明:
Fuzzy是一门新兴的数学,起源于1965年美国加州柏克莱大学(Berkeley)的扎德(L.A.Zadeh)教授,简单地将具有0 及1 两个值的特征函数IA(x)扩展成[0,1] 区间连续值函数μA(x),即对x ∈ X,μA(x) ∈ [0,1],而称此函数为隶属函数(membership function),隶属函数的值正可表示元素x 隶属于集合A 的程度,如此一来,就可将介于“是”与“不是”之间的所有“中庸”之值表示出来,换言之,从是到不是之中介过渡没有明确的概念都可被隶属函数表示出来,中介过渡没有明确的概念不就是模糊概念吗?因此这理论也就称为模糊理论,其目的就是使用明确且严紧的数学方法来刻划描述模糊的现象.
模糊理论实际上是模糊集合、模糊关系、模糊逻辑、模糊控制、模糊量测等理论的泛称.
人类的自然语言也很Fuzzy喔,如昨天天气很热,请把窗户开大一点,空气比较好.
Fuzzy理论就是针对人脑对于模糊的讯息或不完全的数据,其不需经过精密繁杂的计算过程,仍能做出正确判断的特色而发展出来.
模糊控制的基本思想:
把特定的被控对象或过程的控制策略总结成一系列以"IF(条件)THEN(作用)"形式表示的控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程.控制作用集为一组条件语句,状态语句和控制作用均为一组被量化了的模糊语言集,如"正大","负大","正小","负小",零等等.
限于篇幅详细请参考相关模糊理论、模糊控制相关数据【百度文库中有很多数据可供参考】
当然如人工神经网络( Artificial Neural Networks,简写为ANNs)、遗传基因算法(Genetic-Algorithm-GA) 也是不错的解决问题的方法.有时间参考参考也是很不错的.
补充说明:
Fuzzy理论讲究的是近似推理(Approximation reasoning),不以精确计算为手段.以往中国人被讥笑为缺乏科学精神,凡是只要差不多就好,如今这差不多精神却成为了Fuzzy理论解决问题的中心思想【神奇吧】,但这个差不多指的是根据不清晰的信息,透过差不多的推论过程而得到精确的结果.
美国、日本商业化的产品大都以Fuzzy为发展系统,开发实际产品,国内大多停留在数学上的探讨.
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
