欢迎您访问52IJ教育培训网,今天小编为你分享的学习资料方面的学习知识是通过网络精心收集整理的:“陈景润的资料_上面的短文中提到陈景润后来摘取了“数学皇冠上的明...[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
答案一:
没有摘取
所谓皇冠上的明珠是指哥德巴赫猜想的证明:即:任意一个不小于6的自然数都能表示成2个素数之和
陈景润证明到:任意一个不小于6的自然数都能表示成p1+p2*p3的形式
其中,p1,p2,p3都是素数
虽然只差一步,但其中的距离如鸿沟,人类目前为止还不能解决,陈景润是目前离哥德巴赫猜想证明最近的人
答案二:
1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题即:任何一个偶数均可表示两个素数之和.1966年我国数学家陈景润证明了“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积”通常简称为(1+2).而数学皇冠上的明珠就是哥德巴赫猜想,陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想.
答案三:
哥德巴赫曾提出这样一个命题即:任何一个大于6的偶数均可表示两个奇因素之和,任何一个大于9的奇数都可以表示成3个奇因素之和.这个命题也叫千古之谜“1+1“.我国青年数学家陈景润证明了“1+2”,他的证明方法被誉为“陈氏定理”,陈景润本人也被人称为“推动了群山的发展”,更获得了飞人博尔特的称号.冠上的明陈景润摘取数学皇冠上的明珠指的是他证明了哥德巴赫猜想.其实这句话之前还有一句.曾经陈景润的老师说过:“数学是科学的王后,数论是王后上的王冠,而哥德巴赫猜想则是王冠上的明珠”.
答案四:
陈景润摘取数学皇冠上的明珠指的是他破解了哥德巴赫猜想.(具体内容:哥德巴赫提出了‘任何一个偶数均可表示两个素数之和’,简称1+1.他一生也没证明出来,之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题. 而陈景润却用一次次数学计算证明了哥德巴赫猜想,把哥德巴赫猜想原来的“1+1”改变成“2+1”,2+1是正确的)
答案五:
应该是数论皇冠上的明珠,也可称为数学皇冠上的明珠,哥德巴赫猜想俗称(1+1),即每个大于4的偶数都可以表示成两个质数的和.1966年,我国陈景润证明1+2,这是目前对于哥德巴赫猜想最好的结果,虽然离1+1只有一步之遥,但这一步难于上青天.
其他类似问题
问题1:短文中提到陈景润后来摘取了“数学皇冠上的明珠”,这指的是什么呢?[历史科目]
“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少.陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠.这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标.
为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉.辛勤的汗水换来了丰硕的成果.1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界.其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”.华罗庚等老一辈数学家对陈景润的论文给予了高度评价.世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”.
问题2:面的短文中提到陈景润后来摘取了 数学皇冠上的明珠 ,这指的是什么呢?请你收集一下[历史科目]
“哥德巴赫猜想”这一200多年悬而未决的世界级数学难题,曾吸引了各国成千上万位数学家的注意,而真正能对这一难题提出挑战的人却很少.陈景润在高中时代,就听老师极富哲理地讲:自然科学的皇后是数学,数学的皇冠是数论,“哥德巴赫猜想”则是皇冠上的明珠.这一至关重要的启迪之言,成了他一生为之呕心沥血、始终不渝的奋斗目标.
陈景润在夜以继日的研究数学为证明“哥德巴赫猜想”,摘取这颗世界瞩目的数学明珠,陈景润以惊人的毅力,在数学领域里艰苦卓绝地跋涉.辛勤的汗水换来了丰硕的成果.1973年,陈景润终于找到了一条简明的证明“哥德巴赫猜想”的道路,当他的成果发表后,立刻轰动世界.其中“1+2”被命名为“陈氏定理”,同时被誉为筛法的“光辉的顶点”.华罗庚等老一辈数学家对陈景润的论文给予了高度评价.世界各国的数学家也纷纷发表文章,赞扬陈景润的研究成果是“当前世界上研究‘哥德巴赫猜想’最好的一个成果”.
问题3:2009-4-17 上面的短文中提到陈景润后来摘取了“数学皇冠上的明珠”,这指的是什么.[数学科目]
哥德巴赫猜想
问题4:上面的短文中提到陈景润后来提取了数学皇冠上的明珠,这指的是什么呢?请你课外收集一下相关的资料,并简
在现代数学史上,陈景润的名字与哥德巴赫猜想紧紧联系在一起.被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位.
1953年,陈景润毕业于厦门大学数学系.由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调入中国科学院数学研究所工作,后来就有了“罗庚慧眼识景润”的佳话.虽然当时的生活条件非常艰苦,在仅有6平方米的小屋里陈景润坚持埋头于哥德巴赫猜想的研究,经过无数个日夜、几度寒暑的艰苦努力, 终于取得了震惊世界的成就.然而,陈景润付出的努力也是惊人的,用掉的演算草稿纸可以装满几个麻袋,并且积劳成疾.即使如此,躺在病榻上的他,仍锲而不舍地耕耘着.陈景润在数论中其他著名问题,如高斯圆内格点问题、球内格点问题、塔里问题、华林问题等的研究上也做出了重要贡献.
那明珠就是哥德巴赫猜想 ,虽然没有完全证出,但是将那个证明又推进了一步
问题5:有篇文章说陈景润摘取了“数学皇冠上的明珠”,这指什么?[数学科目]
歌德巴赫猜想
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来.
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题.他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是这三个素数之和,461还可以写成257+199+5,仍然是三个素数之和.这样,我发现:任何大于7的奇数都是三个素数之和.
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验."
欧拉回信说:“这个命题看来是正确的,但是他也给不出严格的证明.同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明.”
不难看出,哥德巴赫的命题是欧拉命题的推论.事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立.
但是哥德巴赫的命题成立并不能保证欧拉命题的成立.因而欧拉的命题比哥德巴赫的命题要求更高.
现在通常把这两个命题统称为哥德巴赫猜想 !
1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想.
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式.
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
1920年,挪威的布朗证明了‘“9 + 9”.
1924年,德国的拉特马赫证明了“7 + 7”.
1932年,英国的埃斯特曼证明了“6 + 6”.
1937年,意大利的蕾西先后证明了“5 + 7”,“4 + 9”,“3 + 15”和“2 + 366”.
1938年,苏联的布赫夕太勃证明了“5 + 5”.
1940年,苏联的布赫夕太勃证明了“4 + 4”.
1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数.
1956年,中国的王元证明了“3 + 4”.
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”.
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”,中国的王元证明了“1 + 4”.
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”.
1966年,中国的陈景润证明了 “1 + 2 ”.
“1+2”即“任何一个足够大的正偶数都可以表示为一个素数加上两个素数的乘积”;
然而哥德巴赫的猜想简称“1+1”,目前离其最近的一个猜想是“1+2”,
陈景润证明了“1+2”定理,故称摘取了哥德巴赫猜想数学皇冠上的一颗明珠.
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
