同学们提问关于“抛物线的性质_关于抛物线的一些性质,[数学]”的问题,52IJ师说平台通过网络上精心整理了以下关于“抛物线的性质_关于抛物线的一些性质,[数学]”的一些有用参考答案。请注意:文中所谈及的内容不代表本站的真正观点,也请不要相信各种联系方式。下面是本网所整理的“抛物线的性质_关于抛物线的一些性质,[数学]”的相关信息:
关于抛物线的一些性质,
科目:数学 关键词:抛物线的性质面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围:y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线.而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
3,注重数形结合的思想.
其他类似问题
问题1:有关抛物线的所有性质[数学科目]
面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围:y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线.而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
3,注重数形结合的思想.
问题2:抛物线性质如题,越详细越好.[数学科目]
http://baike.baidu.com/view/734.html?wtp=tt#1
百度百科很详细
问题3:抛物线的性质求焦点在直线3x-4y-12=0上的抛物线的标准方程,并求出抛物线相应的准线方程.[数学科目]
面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围:y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线.而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
3,注重数形结合的思想.
问题4:抛物线性质是啥?[数学科目]
我们一般设抛物线为y=ax2+bx+c,当a>0时,抛物线开口向上,反之向下
问题5:抛物线有哪些性质?![数学科目]
面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围:y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线.而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
