欢迎您访问52IJ教育培训网,今天小编为你分享的数学方面的学习知识是通过网络精心收集整理的:“在平面直角坐标系xoy中_在平面直角坐标系xoy中,直线l与抛物线y2=4x相交于不...[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
(Ⅰ)由题意:抛物线焦点为(1,0)
设l:x=ty+1代入抛物线y2=4x消去x得,
y2-4ty-4=0,设A(x1,y1),B(x2,y2)
则y1+y2=4t,y1y2=-4
∴
?OA OB
=t2y1y2+t(y1+y2)+1+y1y2
=-4t2+4t2+1-4=-3.
(Ⅱ)设l:x=ty+b代入抛物线y2=4x,消去x得
y2-4ty-4b=0设A(x1,y1),B(x2,y2)
则y1+y2=4t,y1y2=-4b
∴
| OA |
| OB |
x
1x
2+y
1y
2=(ty1+b)(ty2+b)+y1y2=t2y1y2+bt(y1+y2)+b2+y1y2
=-4bt2+4bt2+b2-4b=b2-4b
令b2-4b=-4,∴b2-4b+4=0∴b=2.
∴直线l过定点(2,0).
其他类似问题
问题1:在平面直角坐标系xoy中,直线L与抛物线y^=4x相交于不同的A,B两点(1)如果直线l过抛物线的焦点,求向量OA*OB的值(2)如果向量OA*OB=-4,证明直线L必过一定点,求出该定点.[数学科目]
1)抛物线的焦点为(1,0),y=k(x-1),带入k^2(x-1)^2=4x,整理得x^2-(2+4/k^2)+1=0,根据根与系数的关系,x1*x2=1;x1+x2=2+4/k^2;y1*y2=k^2(x1-1)(x2-1)=k^2(x1*x2-x1-x2+1)=-4,所以OA*OB=-3
2)令直线L: y=kx+b,带入抛物线方程(kx+b)^2=4x,整理得x^2-((4-2kb)/k^2)x+b^2/k^2=0;
根据根与系数的关系,x1*x2=b^2/k^2,x1+x2=(4-2kb)/k^2;y1*y2=(kx1+b)(kx2+b)=k^2x1*x2+kb(x1+x2)+b^2=b^2+(4-2kb)*kb/k^2+b^2=4kb/K^2;所以x1x2+y1y2=(b^2+4kb)/k^2=-4;整理的(2k+b)2=0;即2k+b=0;b=-2k;所以L:y=k(x-2),这条直线过点(2,0)
问题2:如图,在平面直角坐标系中,直线y=-3/4x-2/3与抛物线y=-1/4X²+bx+c交于A,B两点,点A在X轴上,点B的横坐标为-8.(1)求该抛物线的解析式(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),[数学科目]
配方来的


问题3:在平面直角坐标系中,O是坐标原点,抛物线y=x²-4x+m与x轴交于A,B两点,在平面直角坐标系中,O是坐标原点,抛物线y=x²-4x+m与x轴交于A,B两点(点A在点B的左侧),与y轴的负半轴交于点C,且OB=OC求[数学科目]
抛物线y=x²-4x+m与x轴交于A,B两点
那么 方程 x²-4x+m=0 有二个不相等的实数根,从而
16-4m>0
这两个根分别是 x1=2-√(4-m) x2=2+√(4-m)
于是A,B的坐标分别为A( 2-√(4-m),0) B(2+√(4-m),0)
抛物线与y轴的负半轴交于点C,且OB=OC
则,m
问题4:在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.若OA?OB=?4,证明直线l必过一定点,并求出该定点.[数学科目]
设A(x1,y1),B(x2,y2),直线l的方程为my+b=x. y
联立my+b=x
∴x1x2=(my1+b)(my2+b)=m2y1y2+bm(y1+y2)+b2,
∵
| OA |
| OB |
∴m2y1y2+bm(y1+y2)+b2+y1y2=-4,
∴b2+(m2+1)(-4b)+4m×bm=-4,
化为b2-4b+4=0,解得b=2.
对于直线l的方程:my+b=x.令y=0,则x=2,
故直线l过定点(0,2).
问题5:平面直角坐标系xoy中,直线L与抛物线y^2=4x交于不同的A、B两点 如果:向量OA乘向量OB=-4,证明直线L必过一平面直角坐标系xoy中,直线L与抛物线y^2=4x交于不同的A、B两点如果:向量OA乘向量OB=-4,证[数学科目]
设A(x1,y1),B(x2,y2)
直线L的斜率不为0
则设直线为x=my+t
(注意,此种设法可以避免分类讨论,即讨论直线的斜率是否存在.)
与抛物线方程y^2=4x联立,
即将直线代入抛物线方程.
则 y²=4(my+t)
∴ y²-4my-4t=0
利用韦达定理
则 y1+y2=4m,y1*y2=-4t
∴ x1*x2=(4x1*4x2)/16=(y1²*y2²)/16=t²
∵ 向量OA乘向量OB=-4
∴ x1x2+y1y2=-4
∴ t²-4t=-4
∴ t²-4t+4=0
∴ (t-2)²=0
∴ t=2
即直线方程为x=my+2
∴ 直线L恒过一个定点,这个定点的坐标是(2,0)
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
