欢迎您访问52IJ教育培训网,今天小编为你分享的数学方面的学习知识是通过网络精心收集整理的:“抛物线的性质_抛物线的性质求焦点在直线3x-4y-12=0上的抛物线的标...[数学]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围:y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线.而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
3,注重数形结合的思想.
其他类似问题
问题1:有关抛物线的所有性质[数学科目]
面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围:y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线.而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
3,注重数形结合的思想.
问题2:抛物线的简单性质点M到点F(3,0)的距离等于它到直线x=-3的距离,点M运动的轨迹是什么图形?你能写出它的方程吗?能画出草图吗?[数学科目]
由抛物线定义(到定点的距离等于到定直线的距离) 所以M点的轨迹是一个抛物线,方程式
x=12y^2 草图的话 我说一下吧 这个就是对称轴是x轴的 一个抛物线 焦点是(3,0)准线是x=-3
问题3:抛物线性质的问题与圆x^2+y^2-6x=0外切,与y轴相切的动圆圆心所满足的方程是?[数学科目]
圆x^2+y^2-6x=0,即(x-3)^2+y^2=9
圆心坐标O(3,0),半径=3
设动圆圆心坐标是P(x,y),则圆P的半径是|x|
所以有:OP=3+|x|
即根号[(x-3)^2+y^2]=3+|x|
平方得:x^2-6x+9+y^2=9+6|x|+x^2
即:y^2=6|x|+6x
即当x>0时,方程是y^2=12x
当x
问题4:抛物线有哪些性质?![数学科目]
面内与一个定点F和一条定直线l
的距离相等的点的轨迹叫做抛物线.
定点F叫做抛物线的焦点.
定直线l 叫做抛物线的准线.
新授内容
一,抛物线的范围:y2=2px
y取全体实数
X
Y
X 0
二,抛物线的对称性 y2=2px
关于X轴对称
没有对称中心,因此,抛物线又叫做无心圆锥曲线.而椭圆和双曲线又叫做有心圆锥曲线
X
Y
新授内容
定义 :抛物线与对称轴的交点,叫做抛物线的顶点
只有一个顶点
X
Y
新授内容
三,抛物线的顶点 y2=2px
所有的抛物线的离心率都是 1
X
Y
新授内容
四,抛物线的离心率 y2=2px
基本点:顶点,焦点
基本线:准线,对称轴
基本量:P(决定抛物线开口大小)
X
Y
新授内容
五,抛物线的基本元素 y2=2px
+X,x轴正半轴,向右
-X,x轴负半轴,向左
+y,y轴正半轴,向上
-y,y轴负半轴,向下
新授内容
六,抛物线开口方向的判断
例.过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A,B两点,求证:以AB为直径的圆和这抛物线的准线相切.
分析:运用抛物线的定义和平面几何知识来证比较简捷.
证明:如图.
所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.
设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足为D,H,C,
则|AF|=|AD|,|BF|=|BC|
∴|AB|=|AF|+|BF|
=|AD|+|BC|=2|EH|
求满足下列条件的抛物线的方程
(1)顶点在原点,焦点是(0,-4)
(2)顶点在原点,准线是x=4
(3)焦点是F(0,5),准线是y=-5
(4)顶点在原点,焦点在x轴上,
过点A(-2,4)
练习
小 结 :
1,抛物线的定义,标准方程类型与图象的对应
关系以及判断方法
2,抛物线的定义,标准方程和它
的焦点,准线,方程
问题5:抛物线性质如题,越详细越好.[数学科目]
http://baike.baidu.com/view/734.html?wtp=tt#1
百度百科很详细
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
