欢迎您访问52IJ教育培训网,今天小编为你分享的语文方面的学习知识是通过网络精心收集整理的:“如果星球不下雨_在其它星球会下雨会有雷声与闪电吗[语文]”,注意:所整理内容不代表本站观点,如你有补充或疑问请在正文下方的评论处发表。下面是详细内容。
注意收看CCTV9记录频道或CCTV10科技频道.
根据我们现有的知识认为宇宙是无穷大的.根据物理学的对称与守衡,必然有与我们对称的生命存在,当然了这是哲学观点了,在现实的观测中,已经可以发现许多拥有类似地球环境的行星存在,这样的话,从理论上讲,绝对是应该有生命出现的,当然了在现实中还没有发现.
退一步讲,在地球上很多东西是不可能靠当时的科技完成的,但是却是存在的,像金字塔,所以说应该是有别的生命的.
在银河系180亿个行星系中,假如1%的星系有生命的可能,那么概率是1.8亿多;在这1.8亿中,假如1%有生物,那么概率是180多方;在180万中,假如有1%是有智慧生物,那么概率是1.8万.如果算上河外星系,概率会高得吓人.因此,"人类是宇宙独苗"的想法是幼稚可笑的.
每当繁星灿烂的夜晚,我们仰首苍穹,一道白练般的银河横亘天际,北极星旁的仙女座星云隐隐向人们诉说着那耳听不见的故事.此时,牛郎织女的神话、嫦娥奔月的传说、北极仙翁的故事,早已在心头环绕,追随屈原问天的古音,我们斗胆问苍天:苍茫浩宇,可有亲朋?
宇宙之中除了星辰以外,还有生物吗?有没有像人类这样伟大的智慧生物?宇宙没有回答!是默认,还是不屑一顾?
这不能怪伟大的宇宙,只能怪渺小的地球人,因为我们在宇宙回答之前,甚至在我们提出问题之前,在我们的心中早已有了一个确定不疑的答案,那就是:地球是宇宙中唯一的独苗.
地球是宇宙独苗的看法自古就有.大家不会忘记,中世纪时候的西方,宗教神学认为,地球是宇宙的中心,因为万能的上帝就居住在地球上.当然,这不仅是西方的问题,几乎在全世界各民族中都有类似的看法.中国人就认为,中国是世界的中心,所以才叫"中国".实际上,大家心里都明白,我们歌颂地球,并不是真正歌颂地球的伟大,而是变着法子歌颂人类的伟大,"世间万物,惟人为大",这才是最根本的目的."地球是宇宙中心","人类是宇宙的独生子"的观念早已深深根植于人们的脑海.
如果说以上的观念产生于认识的落后,尚有情可原,但问题是这同人们的认识似乎没有关系.事实上,直到今天还有相当多的人抱有同样的看法,现代科学在打倒迷信的时候,似乎也无意消除地球中心论观念,相反,许多科学家都在积极寻找证据,来证明地球人类是宇宙独生子的宗教观念.因此,关键在于人类自高自大的本性.
然而,不论人们如何小心翼翼维护着那易于破碎的自尊心,科学本身的发展正一下又一下,一点又一点,将那本来早已千疮百孔的自尊心敲得粉碎,人们正被迫接受如下事实:
正如我们今天把世界看成一个整体一样,实际上整个宇宙就是一个完美的整体,我们地球及太阳系只是这个整体中的一小部分,而且几乎小到完全可以忽略不计的程度.同样的,正如目前所有国家的政治、经济、文化的发展不能脱离世界整体性影响一样,在宇宙中各星系的存在与演变也存在着相互的作用.当我们的文明正冲破地球引力迈向宇宙文明之际,人们越来越认识到,在整个字宙中,能够有意识地影响地球发展的绝非仅有人类(人类影响地球的历史充其量只有200万年的时间,仅占地球时间的1/2500),浩浩的宇宙每时每刻都在发生着人们意想不到的事情,生命的生成与毁灭,乃是宇宙运行中必不可免的日常小事.
让我们先来看一下宇宙中存在生命的概率:现代天文学公认,我们所处的银河系大约有3000亿颗恒星,至少有180亿个行星系,假如这其中只有1%的行星系可能存在生物,那么数字依然是庞大的,乃有1.8亿之多.再假如,这其中1%的行星系上有生物,那么我们得到的数字仍将是180万.让我们再进一步假设,每100颗有生命的行星,只有贝颗居住着智力水平与人类相等的生物,那么我们的银河系有可能存在高级生命的行星仍有1.8万之多.这才是仅仅我们一个银河系,宇宙中间又存在多少个类似银河系的巨大星系呢?恐怕是一个吓人的天文数字.
因此,单从概率的角度讲,地球人是宇宙间唯一智慧生物的观点是幼稚可笑的.毫无疑问,宇宙间有数不清的与地球类似的行星,有类似的混合大气,有类似的引力,有类似的植物,甚至有类似的动物.早在公元前4世纪,古希腊哲学家米特罗德格斯就曾说过:"认为在无边的宇宙中只有地球才有人居住的想法,就像播种谷子的土地上只长出独苗一样可笑."
1997年,美国生物学家在地球上发现一种太古生物,这种生物能在极冷或极热的极端环境下生存,并且它具有细菌和包括动植物及人在内的所有真核生物两种特点,是地地道道的第三种生命形式.此种生物的发现证明,人类对生命所具备的特点了解得相当不够.请不要忘记,这仅仅是在地球的环境之内,在广大的宇宙中间,生命的形式更为复杂,用地球生物观点来品评宇宙生物的存在是最不可取的做法.美国宇航局最近宣布,他们在地球附近的波雷尔利斯恒星周围发现了一颗绕其公转的新行星,这颗行星与太阳系最大的行星木星的大小差不多.新发现的行星距离恒星3700万公里,是地球距太阳的1/4,比水星离太阳的距离还要近,其表面温度估计达到200℃-260℃,在这种温度下,地球生物是很难生存的,但宇宙中可能存在耐高温的生物.这颗行星的发现,使人们增强了信心,太空中很可能有大量存在生命的行星.
1969年,在陨落于澳大利亚的碳质球粒陨石中,发现了地球上不能天然形成的右不对称氨基酸,显示了地球以外孕育生命的可能性.就在最近,美国宇航局宣布,从哈勃太空望远镜中得到的照片显示,一直被认为不稳定的木星上发现有大气,还有潮湿的土壤,这说明木星已经具备产生生命的基本条件.1996年,美国宇航局从一块落在亚利桑纳州来自火星的陨石中发现,这块陨石中存在古代微生物,火星存在生命的古老传说再一次被人们所重视.
1963年,科学家利用射电天文望远镜在人马座发现了有机分子甲醛分子的光谱,这一发现具有重大意义.因为,有机甲醛分子可以转化为氨基酸,而氨基酸乃是生命物质的基本组成形式.有机甲醛分子的发现,再一次证明,地球生命决不是宇宙中独一无二的现象,人类也不应该是宇宙的独生子.
越来越多的发现为我们指示出了一个确定不疑的方向:宇宙中确实存在生命,即使是我们最熟悉的生命形式,也有可能在宇宙的某个角落中产生.现在的问题已经不是证明这些生命的存在,而是要想办法寻找它们.
本世纪70年代,美国率先发射了"旅行者1号"和"旅行者2号",其目的就是在茫茫的宇宙中寻找可能存在的生命形式,并与之对话.此时,两艘宇宙飞船正以每秒17.2公里的速度向外太空飞去.1986年,当它们穿过冥王星后,即飞离了太阳系,成为一颗真正的宇宙行星.假如不出意外的话,它们分别于14.7万年和55.5万年后飞抵太阳系以外的另一个星系.
"旅行者号"带有录制着我们地球人特征、地球风貌及美国前总统卡特向外星文明致意信息的铜制镀金唱片.这位美国前总统在致文中这样写到:"我们向宇宙传送这一信息.10亿年后,当我们的文明发生了深刻的变化,地球的面貌大为改观时,这一信息可能依然存在.在银河系3000亿颗恒星中,一些(也许有许多)恒星的行星上有人居住,并存在着遥远的宇宙文明.如果一个这样的文明截获了'旅行者号',并能理解它所携带的录制内容,就请接受我们如下的致文……."很明显,"旅行者号"是为了寻找地外文明而发射的,换句话说,美国人是以地外文明存在的假设为前提条件的.
1994年,当苏梅克一列维彗星撞击木星时,科学家发现,当撞击发生时,有大量水蒸气出现,这说明,这颗彗星上带有大量的固体水.有水就有生命.苏梅克一列维彗星在宇宙中是颗很平常的彗星,它们在宇宙中穿行,产生生命的可能性是极大的.
实际上,问题还不单单在这里,生命的存在究竟需要怎样的自然环境?难道必须拥有与地球相似的自然条件吗?地球的生物观普遍适合宇宙中所有的星球吗?事实证明,生命只能在类似地球的行星上存在和发展的观点是站不住脚的.
地球上一共有200多万种生物,在我们已知的120万种中,有9000多种井不需要一般的自然环境.厄里希·丹尼肯在其著作《众神之车》中曾介绍了布里斯托尔大学昆虫学家欣顿和布鲁姆在这方面所做的试验,这两位科学家把一种蠓在100℃的高温下烤了几小时,马上又放进液氮中(一270℃),经过强辐照后,他们又把这些试验品放回到正常的生活环境.这些蠓很快便恢复了活力,并且繁殖出了健康的后代.这个试验充分说明,生命只有在地球的条件下才能存在的说法是错误的.
地球生物观认为,阳光、水分、氧气是生命的三要素.然而,人们却在几千米深的海底及北极冰层下发现了不需要阳光的生物,也发现了不需要氧气的细菌,它们叫厌氧细菌.多年前曾有一则报道,人们从完全封闭的岩石层中发现了沉睡数万年的青蛙,在正常的自然条件下,它们竟然恢复了生命的活力.生命真是不可思议,它顽强到远远超出人的想象之外,随着认识的不断深入,我们已经发现了许多在完全意想不到环境下存在的生命,比如,在放射性极强的核物质周围也同样有生命存在.
现在,越来越多的人相信"地外文明"是存在的,他们很可能比我们的进化早几十倍,甚至上百倍.今天,我们不但能够登上月球,而且'还能探测整个太阳系,那么,一个比我们发达不知多少倍的文明,他们也完全有可能跨越星系来考察,在与我们的先民接触当中,留下一些遗迹,传授一些知识.在这一思想下,产生了"远古接触论".
远古接触论的创始人是美国的福特·恰尔兹·侯,他一生中孜孜不倦地搜集能够推翻流行理论的资料和信息,提出"让科学从科学家的垄断下解放出来"的口号.他的基本思想是:宇宙间存在巨大的生物,对于这些生物来说,我们世界的大小只介于饲养箱与实验室之间.他甚至说:"我推测,我们是某些生物的私有财产.我觉得地球本来不属于任何人,但后来它被勘察,沦为了殖民地."
所以其他星球下雨或有雷声的可能性是有的!
其他回答
一般来讲是不会下雨的,,如果会下雨,那地球上的人都可以去别的星球了,,
其他类似问题
问题1:天为什么会下雨``为什么会闪电``闪电为什么还有雷声`
天下雨是由于水蒸气巨集在天空的尘埃中,越来越重就下雨了 ,其他的请百度百科搜索 闪电 和 雷声 比较全面
问题2:下雨时为什么会有闪电和雷声?[物理科目]
雷定义为伴随闪电而产生的声辐射.广义而言,雷与雷暴周围大气的所有流体动力学性质有关.雷可分为两部分.一是人耳可以听到的声能量,称为雷声,二是次声,频率低于人耳能够听到的雷声,通常在几十赫兹以下.一般认为这两种雷所对应的物理机制不同.可以听到的雷声被认为是加热的闪电通道的迅速扩张而引起的,而次声则被认为是当闪电使云中的电场迅速减少时储存在雷暴云静电场中的能量转换而产生的.
实际上有关雷的研究大部分都是早期的工作,有关的评述可以参考Uman(1987),Hill(1977,1979),Few(1974,1975,1981)的有关著作.本书只给出较粗略的描述.
雷声及其产生机制
对于雷的描述已经有两千多年的历史,但是直到1963年Malan(1963)才第一次使用现代术语描述了近处雷电发出的声音.之后Latham(1964), Nakano and Takeuti(1970)以及Uman and Evans(1977)都对雷声进行了实际测量.对雷声的普遍描述是:当闪电打在距观测者100m以内时,出现的声音首先为“咔”声,然后象抽鞭子般的噼啪声,最后变成雷特有的持续隆隆声.Malan(1963)认为“咔”声是由地面向上的主连接先导放电造成的.噼啪声由离观测者最近的回击通道部分产生的冲击波所引起.隆隆声则来自于弯曲放电通道的较高部位.而当闪击点离观测者数百米远时,在第一声炸雷(clap)发生之前,人耳听到的第一声类似于撕布的声音,这种声音持续近一秒钟,接着出现响亮的炸雷.这种撕布的声音起源于(1)垂直的放电通道,其长度与距观测者距离相仿.(2)由地面向上的多个连接先导过程.Hill(1977)曾经从Remillard( 1960)总结出的有关雷的十二条事实中选择了其中 最主要的七个:
(1) 云地闪电通常产生最响的雷.
(2) 在超过十英里左右的距离外偶尔才能闻雷.
(3) 用看到闪电与听到第一次雷声之间的时间间隔可以估计闪击距离.
(4) 大气湍流能减小雷的可闻度.
(5) 紧接强烈雷鸣之后,常有倾盆大雨.
(6) 雷声的强度似乎一地不同于另一地.
(7) 当隆隆声持续时,雷的音调变深沉.
众所周知,由于声音在空气中的传播速度约为330m/s,而光的传播速度为3×108m/s,通道发展速度在105m/s以上.因此,利用声音与光到达观测者的时间差可以大致估算距观测者最近的闪电通道离开观测者的距离.例如,如果到达观测者的声光差为10s,则距观测者最近的闪电通道离开观测者的距离为330m/s×10s=3.3km.这种方法在野外观测中是经常使用的.
那么,雷是如何形成的呢:普遍接受的雷声成因理论认为,人耳可以听到的雷声起源于闪电通道的初始迅速膨胀引发的高压冲击波,它在远距离上退化成为声波.对回击通道的光谱分析认为,在不到10μs的时间内回击通道温度将达到30000K.由于没有足够的时间使得通道的粒子浓度发生显著改变,因此通道的压力将由于温度的升高而迅速增加.在前5μs内平均的通道压力可以达到10个巴.这样一个通道过压将会导致强烈的冲击波使得通道迅速膨胀.
Abramson等(1947)最先从理论上指出,当气体中发生火花击穿和增温时,则会出现等离子体的突然膨胀,并伴有冲击波.在此基础上,发展了一种解析方法来解这种沿无限窄的线源、瞬时释放能量的理想情况下的流体动力学问题.这种解析方法随后又被Drabkina(1951)推广到在击穿通道中逐渐聚集能量的情况.以后这一理论又被Braginskii( 1958)进一步推广并应用到闪电的情况.Sakurai(1953)和Lin( 1954)给出了沿无限窄线源瞬时释放能量的类似的解析解.
完善描述闪电通道的增长要涉及许多因素,例如辐射传输、主回击电流前通道中的初始条件、输人电流的时间分布、通道等离子体中电能向热能的转换、通道的耗损等物理特性以及通道的长度和弯曲情况等几何特性.虽然Troutman(1969),Colgate 和McKee(1969),Hill(1971),Plooster(1971a)以及Few(1969,1981)都曾尝试着论述了更接近闪电通道情况的通道增长问题,但是至今所有的处理方法都只考虑初始能量在圆柱体中对称分布的情况,还没有模拟真实的弯曲闪电通道的尝试.不过,对有限大小的线源,所有的结果都证实了当闪电通道每单位长度中聚集极高的能量时,要产生过压强冲击波.
Few(1969,1981)提出,雷的功率谱具有球对称的膨胀冲击波特征.假定行为如同“点源”的一小段通道的平均长度等于3/4倍通道的特征半径R0,则R0=(En/πP0)1/2,这里En是每单位长度通道中的能量耗散,P0是环境压力.功率谱极大值的频率fm=0.63C0(P0/E),这里C0是声速.
虽然对闪电产生的冲击波的传播尚未进行足够的实验,但Holmes et al.(1971a), Dawson et al.(1968)以及Uman et al.(1970)对实验室长火花放电产生的冲击波衰减进行了测量,实验基本上证实了上述Few的冲击波理论.
与产生上述可听见雷声的热通道机制不同,次声可能与闪电使云电荷的分布改变后引起的云内静电场的张弛有关(Few, 1985).实际上到目前为止,尽管对这两种过程的产生机理有物理模式进行描述,但是这两类机制的直接证据是什么,这两类机制对观测到的雷的压力变化的贡献如何等等,仍然没有解决.
利用雷声对闪电通道的重构
如果不在一条直线上的三个或三个以上的话筒同时记录到了一次雷声的主要特征,则可以利用到达每一个话筒的声光差来确定声源的位置.通常有两种不同的方法.比较准确的方法是线状跟踪法(ray tracing),它可以给出一次雷声事件中的多个声源点,从而可对闪电的放电通道进行重构.这种方法中,话筒之间距离相对较近,一般为几十米.利用声波的主要特征到达每一个话筒的时间差可以确定入射声波的方向,再利用闪电到达话筒阵的声光差对方向射线进行数学回归则可以确定放电源的位置.使用这一方法对闪电放电通道的重构技术可以参看Few and Teer(1974), Nakano(1976)和MacGoman et al.(1981)的文章.
声定位的另一种方法被称为雷测距(thunder ranging),这种方法中三个话筒相距较远,一般在公里量级,测得的位置一般误差较大.按照Few(1981)的理论,声信号到达相距100m以上距离的两个话筒时由于传播路径的不同将变为不相关的,但是一些粗略的特征在相距公里量级的两个话筒上仍然具有相关性.对于炸雷而言,到达一个测站的声光差可以用来确定一个可能源位置的球面.三个话筒得到的三个球面相交的点则是炸雷发生位置.利用这种方法对闪电通道的重构可以参看Uman et al.(1978)的文章.
问题3:下雨时,是先看到闪电还是先听到雷声?
先看到闪电,因为光速比声速快得多
问题4:闪电和雷声是同时产生的,为什么我们先看见闪电,后听见雷声呢?[物理科目]
答:闪电和雷声是同时产生的,因为闪电是以光的速度传播的,而雷声是以声音的速度传播的,因为光的传播速度比声音的传播速度大的多,所以光和声音传播相同的距离,光用时比声音短的多.所以我们先看见闪电,后听见雷声.
问题5:为什么下雨时先看见闪电再看见雷声说的具体点行吗[物理科目]
闪电是云与云之间,或云与大地之间大规模的火花放电现象.云对地面的闪电电流,往往以105米/秒的平均速率沿一条曲折路径向地面接近.当达到离地数十米的地方,就有另一道闪电从地面迎上,与下降的电闪相接.
闪电的电流可强达104~105安培.闪电的通路只有手指的粗细,温度可高达3×104℃.比太阳表面的温度(6×103)℃更高许多倍.
由于温度这样高,通路的气柱就发生爆发性膨胀,造成强烈声波,这就是雷声.雷声是汽柱膨胀产生的,但加热需要过程,即先放电我们看到光后气体才被加热爆炸.
这只是一个方面.其实最主要的是光的速度太快的缘故.
当然还有一个方面是人感觉声音的器官要比眼睛靠后,
虽然只有几厘米,但也可以勉强算一个原因吧.
一次闪电平均维持时间不足半秒,但我们却听到一段隆隆的雷声.这至少有两个原因:
一是闪电的长度可达几公里.由于声速约为340米/秒,比起闪电的速率小得多.故该人就听到较长的雷声.
另一原因,是雷声被云层或远山反射,来来回回,造成较长时间的回声.也就形成雷声隆隆.
- 评论列表(网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述)
-
